Newton polygons for certain two variable exponential sums

IF 0.6 3区 数学 Q3 MATHEMATICS
Bolun Wei
{"title":"Newton polygons for certain two variable exponential sums","authors":"Bolun Wei","doi":"10.1016/j.jnt.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>y</mi><mo>+</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></mfrac></math></span> be a Laurent polynomial over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with <em>t</em> a parameter. This paper studies the Newton polygon for the <em>L</em>-function <span><math><mi>L</mi><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mi>T</mi><mo>)</mo></math></span> of toric exponential sums attached to <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> over a finite field with characteristic <em>p</em>. The explicit Newton polygon is obtained by systematically using Dwork's <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-splitting function with an appropriate choice of basis for cohomology following the method of <span><span>[2]</span></span>. Our result provides a nontrivial explicit Newton polygon for a non-ordinary family of more than one variable with asymptotical behavior, which gives evidence of Wan's limit conjecture <span><span>[16]</span></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 178-213"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ft(x,y)=xn+y+txy be a Laurent polynomial over Fq with t a parameter. This paper studies the Newton polygon for the L-function L(ft,T) of toric exponential sums attached to ft over a finite field with characteristic p. The explicit Newton polygon is obtained by systematically using Dwork's θ-splitting function with an appropriate choice of basis for cohomology following the method of [2]. Our result provides a nontrivial explicit Newton polygon for a non-ordinary family of more than one variable with asymptotical behavior, which gives evidence of Wan's limit conjecture [16].
某些双变量指数和的牛顿多边形
设ft(x,y)=xn+y+ xy是一个以t为参数的罗兰多项式除以Fq。本文研究了特征为p的有限域上复向指数和附于ft的L函数L(ft,T)的牛顿多边形。根据[2]方法,系统地利用Dwork的θ∞分裂函数,选择适当的上同调基,得到了显式牛顿多边形。我们的结果提供了一个具有渐近行为的非平凡多变量族的非平凡显式牛顿多边形,证明了Wan的极限猜想[16]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信