Ryan W. Clarke , Briona J. Carswell , Jason S. DesVeaux , Levi J. Hamernik , Clarissa Lincoln , Vinod K. Konaganti , Rufina G. Alamo , Katrina M. Knauer
{"title":"Re-directing mixed-feed deconstruction products to hybrid polyesters: Tolerance windows for commodity plastics reconstruction","authors":"Ryan W. Clarke , Briona J. Carswell , Jason S. DesVeaux , Levi J. Hamernik , Clarissa Lincoln , Vinod K. Konaganti , Rufina G. Alamo , Katrina M. Knauer","doi":"10.1016/j.resconrec.2025.108439","DOIUrl":null,"url":null,"abstract":"<div><div>Solvolysis is a promising strategy for mixed-feed polyester recycling, but little attention has been given to downstream product separations or the impact of using imperfectly separated monomer mixtures in recycled polymer reconstruction. Here, we challenge the traditional need for high-purity monomers in polycondensation synthesis of engineering thermoplastics. Monomer mixtures are derived from catalyzed methanolysis of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polybutylene adipate-<em>co</em>-terephthalate (PBAT), with separation scenarios ranging from high (99:1) to low (90:10) purity. We focus on challenging-to-separate products like ethylene glycol and 1,4-butanediol and evaluate tolerance for comonomer incorporation in recycled hybrid polyesters: polybutylene-<em>co</em>-ethylene terephthalate (PBET) and polybutylene ethylene adipate-<em>co</em>-terephthalate (PBEAT). Evaluations are made between “contaminant” monomer incorporation, and the resulting materials’ thermal properties, crystalline structure, tensile toughness, and rheology. Ultimately, we highlight that despite incorporation of contaminant monomer, high-performance hybrid polyesters of PET, PBT, and PBAT are obtained while reducing the strain of high-throughput separations.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"222 ","pages":"Article 108439"},"PeriodicalIF":11.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344925003179","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solvolysis is a promising strategy for mixed-feed polyester recycling, but little attention has been given to downstream product separations or the impact of using imperfectly separated monomer mixtures in recycled polymer reconstruction. Here, we challenge the traditional need for high-purity monomers in polycondensation synthesis of engineering thermoplastics. Monomer mixtures are derived from catalyzed methanolysis of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polybutylene adipate-co-terephthalate (PBAT), with separation scenarios ranging from high (99:1) to low (90:10) purity. We focus on challenging-to-separate products like ethylene glycol and 1,4-butanediol and evaluate tolerance for comonomer incorporation in recycled hybrid polyesters: polybutylene-co-ethylene terephthalate (PBET) and polybutylene ethylene adipate-co-terephthalate (PBEAT). Evaluations are made between “contaminant” monomer incorporation, and the resulting materials’ thermal properties, crystalline structure, tensile toughness, and rheology. Ultimately, we highlight that despite incorporation of contaminant monomer, high-performance hybrid polyesters of PET, PBT, and PBAT are obtained while reducing the strain of high-throughput separations.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.