Thomas M.D. Augereau , Daniel Paromov , Adriana B.M. Lacerda , Victoria Duda , François Champoux
{"title":"Electrophysiological markers of early auditory temporal resolution deterioration with aging","authors":"Thomas M.D. Augereau , Daniel Paromov , Adriana B.M. Lacerda , Victoria Duda , François Champoux","doi":"10.1016/j.heares.2025.109325","DOIUrl":null,"url":null,"abstract":"<div><div>Aging significantly impacts auditory perception, particularly temporal resolution, which is the ability to detect rapid changes in sounds. Temporal resolution is often studied using gap detection methods, where a silent gap is inserted into a longer noise duration. Previous research indicates that aging negatively affects gap detection at the behavioral level. To objectively examine this process, electrophysiological correlates can be studied using a multi-deviant oddball paradigm. Existing data show reduced Deviant-Related Negativity (DRN) amplitudes and increased latencies in older adults compared to younger adults, suggesting a pre-attentive decline in processing basic temporal stimulus features. The effects of aging on gap detection have not been extensively investigated, making it uncertain whether changes can be detected in groups with smaller age differences. This study aims to investigate DRN and P2/P3a components in healthy, normal-hearing young (18-25 years) and middle-aged (30-45 years) adults using a multi-deviant paradigm combined with a behavioral gap audibility task with fixed gap durations. While behavioral task results were inconclusive, DRN latency analysis revealed significant differences during adaptation to deviant stimuli between age groups at various gap durations, displaying opposite slopes between both groups. Specifically, middle-aged participants exhibited increasing slopes, while younger participants showed decreasing slopes. Additionally, middle-aged adults exhibited significantly increased P2/P3a latencies compared to younger adults. These findings not only confirm the impact of aging on DRN during temporal resolution tasks but also suggest that examining the P2/P3a component could be valuable for early detection of age-related auditory decline.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"464 ","pages":"Article 109325"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595525001431","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging significantly impacts auditory perception, particularly temporal resolution, which is the ability to detect rapid changes in sounds. Temporal resolution is often studied using gap detection methods, where a silent gap is inserted into a longer noise duration. Previous research indicates that aging negatively affects gap detection at the behavioral level. To objectively examine this process, electrophysiological correlates can be studied using a multi-deviant oddball paradigm. Existing data show reduced Deviant-Related Negativity (DRN) amplitudes and increased latencies in older adults compared to younger adults, suggesting a pre-attentive decline in processing basic temporal stimulus features. The effects of aging on gap detection have not been extensively investigated, making it uncertain whether changes can be detected in groups with smaller age differences. This study aims to investigate DRN and P2/P3a components in healthy, normal-hearing young (18-25 years) and middle-aged (30-45 years) adults using a multi-deviant paradigm combined with a behavioral gap audibility task with fixed gap durations. While behavioral task results were inconclusive, DRN latency analysis revealed significant differences during adaptation to deviant stimuli between age groups at various gap durations, displaying opposite slopes between both groups. Specifically, middle-aged participants exhibited increasing slopes, while younger participants showed decreasing slopes. Additionally, middle-aged adults exhibited significantly increased P2/P3a latencies compared to younger adults. These findings not only confirm the impact of aging on DRN during temporal resolution tasks but also suggest that examining the P2/P3a component could be valuable for early detection of age-related auditory decline.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.