{"title":"Cannabigerol – A potent regulator of insulin sensitivity in rat’s skeletal muscle via targeting the sphingolipid metabolism and PI3K/Akt/mTOR pathway?","authors":"Patrycja Bielawiec , Lara Swierkot , Karolina Konstantynowicz-Nowicka , Adrian Chabowski , Agnieszka Błachnio-Zabielska , Ewa Harasim-Symbor","doi":"10.1016/j.biocel.2025.106819","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the great advances in medicine, there is a compelling need to develop alternative strategies to effectively treat obesity with the use of plant-origin therapeutics. Cannabigerol (CBG) appears to be a novel promising compound for managing this increasingly prevalent disease requiring multifaceted pharmacotherapy. Therefore, the herein study aimed to evaluate the potential therapeutic properties of 2-week CBG administration on the muscular metabolism of sphingolipids as well as insulin signal transduction pathway in a rat model of obesity and insulin resistance (IR) induced by high-fat, high-sucrose (HFHS) diet. The high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS) were used to determine the sphingolipids content, while the multiplex assay kit was applied to measure the level of the phosphorylated form of proteins from the PI3K/Akt/mTOR pathway. The expression of various proteins engaged in the sphingolipid metabolism and insulin signaling was assessed using Western blotting. Our results showed that 2-week CBG treatment decreased the muscular content of most deleterious C16:0-Cer and C18:0-Cer ceramide species and reduced the intramuscular concentrations of sphinganine (SFA) and sphingosine (SFO), redirecting their metabolism toward phosphorylated derivatives, sphinganine-1-phosphate (SFA1P), and sphingosine-1-phosphate (S1P), respectively. Simultaneously, CBG counteracted S1P efflux in skeletal muscle, inhibiting the tissue-specific S1P/S1PR3 signaling. CBG also activated the PI3K/Akt/mTOR pathway, which increased the phosphorylation of protein kinase B (Akt) and its downstream targets in the myocytes of obese rats. These results suggest that CBG may play an essential homeostatic role in skeletal muscles and can protect from the development of obesity-associated metabolic derangements.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"186 ","pages":"Article 106819"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272525000871","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the great advances in medicine, there is a compelling need to develop alternative strategies to effectively treat obesity with the use of plant-origin therapeutics. Cannabigerol (CBG) appears to be a novel promising compound for managing this increasingly prevalent disease requiring multifaceted pharmacotherapy. Therefore, the herein study aimed to evaluate the potential therapeutic properties of 2-week CBG administration on the muscular metabolism of sphingolipids as well as insulin signal transduction pathway in a rat model of obesity and insulin resistance (IR) induced by high-fat, high-sucrose (HFHS) diet. The high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS) were used to determine the sphingolipids content, while the multiplex assay kit was applied to measure the level of the phosphorylated form of proteins from the PI3K/Akt/mTOR pathway. The expression of various proteins engaged in the sphingolipid metabolism and insulin signaling was assessed using Western blotting. Our results showed that 2-week CBG treatment decreased the muscular content of most deleterious C16:0-Cer and C18:0-Cer ceramide species and reduced the intramuscular concentrations of sphinganine (SFA) and sphingosine (SFO), redirecting their metabolism toward phosphorylated derivatives, sphinganine-1-phosphate (SFA1P), and sphingosine-1-phosphate (S1P), respectively. Simultaneously, CBG counteracted S1P efflux in skeletal muscle, inhibiting the tissue-specific S1P/S1PR3 signaling. CBG also activated the PI3K/Akt/mTOR pathway, which increased the phosphorylation of protein kinase B (Akt) and its downstream targets in the myocytes of obese rats. These results suggest that CBG may play an essential homeostatic role in skeletal muscles and can protect from the development of obesity-associated metabolic derangements.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics