Unraveling the electronic, vibrational, thermodynamic, optical and piezoelectric properties of LiNbO3, LiTaO3 and Li2NbTaO6 from first-principles calculations

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Debidutta Pradhan, Rojalin Swain, Souvagya Kumar Biswal, Jagadish Kumar
{"title":"Unraveling the electronic, vibrational, thermodynamic, optical and piezoelectric properties of LiNbO3, LiTaO3 and Li2NbTaO6 from first-principles calculations","authors":"Debidutta Pradhan,&nbsp;Rojalin Swain,&nbsp;Souvagya Kumar Biswal,&nbsp;Jagadish Kumar","doi":"10.1016/j.jpcs.2025.112879","DOIUrl":null,"url":null,"abstract":"<div><div>The piezoelectric and optical properties are pivotal in advancing modern microelectronics and smart device technologies. In this context, LiNbO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and LiTaO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> emerge as promising functional perovskites, exhibiting appreciable ferroelectric and nonlinear optical properties with a broad range of applications. In this study, we have investigated electronic, vibrational, optical, thermal and piezoelectric properties of LiNbO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, LiTaO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Li<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>NbTaO<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> using first-principles calculations based on density functional theory. We have checked the structural stability by calculating the tolerance factor and formation energy before proceeding to further calculations. The ground state electronic band structures and corresponding density of states establish their semiconducting nature with a wide band gap range of 3.5–3.7 eV. Optical properties, including the dielectric function, absorption coefficient, optical conductivity, refractive index, absorbance, and reflectance, were simulated using time-dependent perturbation theory. Furthermore, the piezoelectric properties and Born effective charges were systematically investigated to elucidate the underlying correlation between covalency and induced polarization. In these materials, the distortion affected by the small ionic radius of Li<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>, coupled with the strong covalent interaction between transition metal elements and oxygen, leads to high spontaneous polarization, enhancing their piezoelectric and optical properties.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112879"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The piezoelectric and optical properties are pivotal in advancing modern microelectronics and smart device technologies. In this context, LiNbO3 and LiTaO3 emerge as promising functional perovskites, exhibiting appreciable ferroelectric and nonlinear optical properties with a broad range of applications. In this study, we have investigated electronic, vibrational, optical, thermal and piezoelectric properties of LiNbO3, LiTaO3 and Li2NbTaO6 using first-principles calculations based on density functional theory. We have checked the structural stability by calculating the tolerance factor and formation energy before proceeding to further calculations. The ground state electronic band structures and corresponding density of states establish their semiconducting nature with a wide band gap range of 3.5–3.7 eV. Optical properties, including the dielectric function, absorption coefficient, optical conductivity, refractive index, absorbance, and reflectance, were simulated using time-dependent perturbation theory. Furthermore, the piezoelectric properties and Born effective charges were systematically investigated to elucidate the underlying correlation between covalency and induced polarization. In these materials, the distortion affected by the small ionic radius of Li+, coupled with the strong covalent interaction between transition metal elements and oxygen, leads to high spontaneous polarization, enhancing their piezoelectric and optical properties.
从第一性原理计算中揭示了LiNbO3、LiTaO3和Li2NbTaO6的电子、振动、热力学、光学和压电性质
压电和光学特性是推进现代微电子和智能器件技术的关键。在这种背景下,LiNbO3和LiTaO3作为有前途的功能钙钛矿出现,表现出可观的铁电和非线性光学性质,具有广泛的应用。在这项研究中,我们利用基于密度泛函理论的第一性原理计算研究了LiNbO3, LiTaO3和Li2NbTaO6的电子,振动,光学,热学和压电性质。在进行进一步的计算之前,我们通过计算容差系数和地层能量来检查结构的稳定性。基态电子能带结构和相应的态密度决定了其半导体性质,带隙范围为3.5 ~ 3.7 eV。光学性质,包括介电函数,吸收系数,光学电导率,折射率,吸光度和反射率,模拟使用时依赖摄动理论。此外,系统地研究了压电性能和Born有效电荷,以阐明共价和诱导极化之间的潜在关系。在这些材料中,Li+的小离子半径影响的畸变,加上过渡金属元素与氧之间的强共价相互作用,导致高自发极化,增强了它们的压电和光学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信