Design of GaN SBD with high cutoff frequency for THz mixer applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Siyuan Zhang , Xiaolin Hao , Guodong Gu , Hao Yu , Xubo Song , Yuanjie Lv , Wei Huang , D.W. Zhang , Junyan Zhu , Yanwen Zhang , Xiaodong Yang , Zhihong Feng
{"title":"Design of GaN SBD with high cutoff frequency for THz mixer applications","authors":"Siyuan Zhang ,&nbsp;Xiaolin Hao ,&nbsp;Guodong Gu ,&nbsp;Hao Yu ,&nbsp;Xubo Song ,&nbsp;Yuanjie Lv ,&nbsp;Wei Huang ,&nbsp;D.W. Zhang ,&nbsp;Junyan Zhu ,&nbsp;Yanwen Zhang ,&nbsp;Xiaodong Yang ,&nbsp;Zhihong Feng","doi":"10.1016/j.micrna.2025.208234","DOIUrl":null,"url":null,"abstract":"<div><div>This work firstly reports the high-frequency GaN planar Schottky barrier diodes (SBDs) for 220 GHz mixer applications, while conducting a systematic investigation into the design and optimization of device frequency performance through advanced device-level simulations. To enhance the cutoff frequency characteristics, device-level Sentaurus-TCAD simulation were employed to establish the quantitative relationship between critical structural parameters (N-GaN layer thickness and anode size) and key electrical parameters (series resistance <em>R</em><sub>s</sub> and zero-bias junction capacitance <em>C</em><sub>j0</sub>). Results reveal that the reduction of the N-GaN layer thickness combined with optimal anode size enables significant improvement in cutoff frequency, achieving theoretical values nearly 4 THz. Guided by these simulations, the device fabricated within current fabrication capabilities achieved a 31.55 Ω <em>R</em> and 2.1 fF <em>C</em><sub>j0</sub> with a 50 nm N-GaN layer thickness and a 0.5 μm anode radius, producing a high cutoff frequency of 2.41 THz. Finally, the SBD fabricated based on simulation was embedded in a quartz based microstrip circuit for testing. The mixer exhibits good millimeter-wave performance with a conversion loss (CL) below 18 dB across 210–224 GHz and an input 1 dB compression point (<em>P</em><sub>in1dB</sub>) of 2 dBm at room temperature, confirming excellent linearity characteristics. This work establishes following advancements, including the development of a TCAD-based simulation framework for optimizing parasitic parameters and cutoff frequency in GaN SBDs, and the demonstration of high-frequency GaN SBDs’ potential in terahertz mixer systems, providing a novel methodology for advancing GaN technology in terahertz applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208234"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This work firstly reports the high-frequency GaN planar Schottky barrier diodes (SBDs) for 220 GHz mixer applications, while conducting a systematic investigation into the design and optimization of device frequency performance through advanced device-level simulations. To enhance the cutoff frequency characteristics, device-level Sentaurus-TCAD simulation were employed to establish the quantitative relationship between critical structural parameters (N-GaN layer thickness and anode size) and key electrical parameters (series resistance Rs and zero-bias junction capacitance Cj0). Results reveal that the reduction of the N-GaN layer thickness combined with optimal anode size enables significant improvement in cutoff frequency, achieving theoretical values nearly 4 THz. Guided by these simulations, the device fabricated within current fabrication capabilities achieved a 31.55 Ω R and 2.1 fF Cj0 with a 50 nm N-GaN layer thickness and a 0.5 μm anode radius, producing a high cutoff frequency of 2.41 THz. Finally, the SBD fabricated based on simulation was embedded in a quartz based microstrip circuit for testing. The mixer exhibits good millimeter-wave performance with a conversion loss (CL) below 18 dB across 210–224 GHz and an input 1 dB compression point (Pin1dB) of 2 dBm at room temperature, confirming excellent linearity characteristics. This work establishes following advancements, including the development of a TCAD-based simulation framework for optimizing parasitic parameters and cutoff frequency in GaN SBDs, and the demonstration of high-frequency GaN SBDs’ potential in terahertz mixer systems, providing a novel methodology for advancing GaN technology in terahertz applications.
太赫兹混频器用高截止频率GaN SBD的设计
本工作首次报道了用于220 GHz混频器的高频GaN平面肖特基势垒二极管(sbd),同时通过先进的器件级模拟对器件频率性能的设计和优化进行了系统的研究。为了增强截止频率特性,采用器件级Sentaurus-TCAD仿真建立了关键结构参数(N-GaN层厚度和阳极尺寸)与关键电学参数(串联电阻Rs和零偏结电容Cj0)之间的定量关系。结果表明,减小N-GaN层厚度和优化阳极尺寸可以显著提高截止频率,达到理论值接近4 THz。在这些模拟的指导下,该器件在现有的制造能力下实现了31.55 Ω R和2.1 fF Cj0, N-GaN层厚度为50 nm,阳极半径为0.5 μm,产生了2.41 THz的高截止频率。最后,将仿真制备的SBD嵌入石英微带电路中进行测试。该混频器具有良好的毫米波性能,在210-224 GHz范围内转换损耗(CL)低于18 dB,室温下输入1dB压缩点(Pin1dB)为2 dBm,证实了出色的线性特性。这项工作建立了以下进展,包括开发基于tcad的仿真框架,用于优化GaN sbd中的寄生参数和截止频率,以及展示高频GaN sbd在太赫兹混频器系统中的潜力,为在太赫兹应用中推进GaN技术提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信