Green economic growth: Convergence patterns and eco-productivity clusters

Q1 Economics, Econometrics and Finance
Oleksii Lyulyov , Tetyana Pimonenko
{"title":"Green economic growth: Convergence patterns and eco-productivity clusters","authors":"Oleksii Lyulyov ,&nbsp;Tetyana Pimonenko","doi":"10.1016/j.joitmc.2025.100567","DOIUrl":null,"url":null,"abstract":"<div><div>Given the intersecting challenges of climate instability, resource constraints, and digital transformation, there is an urgent need for scholarly inquiry into the evolving patterns of green economic growth to inform evidence-based strategies for fostering sustainable and inclusive development across the European region. This study explores green growth trajectories in European Union (EU) countries and Ukraine, focusing on convergence patterns, eco-productivity clustering, and the influence of digitalisation and institutional quality. Using the Malmquist–Luenberger productivity index (TFPCH) and σ- and β-convergence approaches, the analysis reveals evidence of long-term β-convergence, while short-term convergence remains weak due to institutional and technological disparities. Conditional convergence results highlight the positive role of institutional quality, whereas digitalisation, proxied by AI investments, shows a limited uniform impact. Cluster analysis identifies three eco-productivity groups, with Ukraine forming a distinct cluster marked by weaker institutions and declining green productivity. The findings suggest that convergence is not automatic, requiring strong governance and regionally adaptive policies. Recommendations include strengthening institutional capacity, addressing the digital divide, supporting knowledge transfer, and investing in green-oriented human capital. The study acknowledges limitations related to timeframe, digital proxies, and data coverage, and calls for future research incorporating broader digital and social indicators and spatial econometric analysis to better understand regional spillovers.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 2","pages":"Article 100567"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125001027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Given the intersecting challenges of climate instability, resource constraints, and digital transformation, there is an urgent need for scholarly inquiry into the evolving patterns of green economic growth to inform evidence-based strategies for fostering sustainable and inclusive development across the European region. This study explores green growth trajectories in European Union (EU) countries and Ukraine, focusing on convergence patterns, eco-productivity clustering, and the influence of digitalisation and institutional quality. Using the Malmquist–Luenberger productivity index (TFPCH) and σ- and β-convergence approaches, the analysis reveals evidence of long-term β-convergence, while short-term convergence remains weak due to institutional and technological disparities. Conditional convergence results highlight the positive role of institutional quality, whereas digitalisation, proxied by AI investments, shows a limited uniform impact. Cluster analysis identifies three eco-productivity groups, with Ukraine forming a distinct cluster marked by weaker institutions and declining green productivity. The findings suggest that convergence is not automatic, requiring strong governance and regionally adaptive policies. Recommendations include strengthening institutional capacity, addressing the digital divide, supporting knowledge transfer, and investing in green-oriented human capital. The study acknowledges limitations related to timeframe, digital proxies, and data coverage, and calls for future research incorporating broader digital and social indicators and spatial econometric analysis to better understand regional spillovers.
绿色经济增长:趋同模式与生态生产力集群
鉴于气候不稳定、资源限制和数字化转型等相互交织的挑战,迫切需要对不断变化的绿色经济增长模式进行学术研究,为促进整个欧洲地区可持续和包容性发展的循证战略提供信息。本研究探讨了欧盟国家和乌克兰的绿色增长轨迹,重点关注趋同模式、生态生产力集群以及数字化和制度质量的影响。利用Malmquist-Luenberger生产率指数(TFPCH)和σ-和β-收敛方法,分析发现,由于制度和技术差异,长期β-收敛存在证据,而短期收敛仍然较弱。条件趋同结果突出了制度质量的积极作用,而以人工智能投资为代表的数字化则显示出有限的统一影响。聚类分析确定了三个生态生产力组,乌克兰形成了一个独特的集群,其特征是制度薄弱,绿色生产力下降。研究结果表明,趋同不是自动发生的,需要强有力的治理和适应区域的政策。建议包括加强机构能力、解决数字鸿沟、支持知识转移以及投资绿色导向的人力资本。该研究承认在时间框架、数字代理和数据覆盖方面存在局限性,并呼吁未来的研究纳入更广泛的数字和社会指标以及空间计量经济学分析,以更好地了解区域溢出效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信