{"title":"Recursive construction of biorthogonal polynomials for handling polynomial regression","authors":"Laura Rebollo-Neira, Jason Laurie","doi":"10.1016/j.amc.2025.129578","DOIUrl":null,"url":null,"abstract":"<div><div>An adaptive procedure for constructing polynomials which are biorthogonal to the basis of monomials in the same finite-dimensional inner product space is proposed. By taking advantage of available orthogonal polynomials, the proposed methodology reduces the well-known instability problem arising from the matrix inversion involved in classical polynomial regression. The recurrent generation of the biorthogonal basis facilitates the upgrading of all its members to include an additional one. Moreover, it allows for a natural downgrading of the basis. This convenient feature leads to a straightforward approach for reducing the number of terms in the polynomial regression approximation. The merit of this approach is illustrated through a series of examples where the resulting biorthogonal basis is derived from Legendre, Laguerre, and Chebyshev orthogonal polynomials.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129578"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An adaptive procedure for constructing polynomials which are biorthogonal to the basis of monomials in the same finite-dimensional inner product space is proposed. By taking advantage of available orthogonal polynomials, the proposed methodology reduces the well-known instability problem arising from the matrix inversion involved in classical polynomial regression. The recurrent generation of the biorthogonal basis facilitates the upgrading of all its members to include an additional one. Moreover, it allows for a natural downgrading of the basis. This convenient feature leads to a straightforward approach for reducing the number of terms in the polynomial regression approximation. The merit of this approach is illustrated through a series of examples where the resulting biorthogonal basis is derived from Legendre, Laguerre, and Chebyshev orthogonal polynomials.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.