Utilization of machine learning algorithms in estimation of syngas fractions and exergy values for gasification of biomass-lignite mixtures in fixed and fluidized bed gasifiers

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-06-07 DOI:10.1016/j.fuel.2025.135883
Mislina Cakar , Mert Akin Insel , Hasan Sadikoglu , Ozgun Yucel
{"title":"Utilization of machine learning algorithms in estimation of syngas fractions and exergy values for gasification of biomass-lignite mixtures in fixed and fluidized bed gasifiers","authors":"Mislina Cakar ,&nbsp;Mert Akin Insel ,&nbsp;Hasan Sadikoglu ,&nbsp;Ozgun Yucel","doi":"10.1016/j.fuel.2025.135883","DOIUrl":null,"url":null,"abstract":"<div><div>Earth’s environmental challenges, such as climate change and pollution, require urgent emission reductions. A thermochemical method that transforms carbon-rich substances into syngas, biomass gasification produces clean hydrogen as a sustainable energy carrier. This process ensures high carbon conversion efficiency while minimizing greenhouse gas emissions. This study examines the gasification of nine biomass-lignite blends using fluidized-bed and fixed-bed gasifiers. A wide range of biomass samples blended with lignite enabled the analysis of different sample characteristics and their impact on the gasification technique. ASPEN Plus® simulations assess the effects of biomass-to-lignite ratio, equivalence ratio (ER), steam to biomass ratio (SBR), and reactor temperature on syngas fraction and system efficiency. Machine learning models gaussian process regression (GPR), random forest (RF), support vector machine (SVM), and decision tree (DT) predict syngas and product gas exergy values, providing a data-driven optimization approach. For hazelnut shell validation, R2 values were 0.98 for the fixed-bed model and 0.96 for the fluidized-bed model. The Random Forest algorithm demonstrated the highest accuracy (R2 = 0.93), outperforming other models. The study also analysed the amount of data required and demonstrated robust models capable of learning with limited data. Since a significant portion of the machine learning process involves dataset creation, the ability to learn from small datasets is crucial. This highlights the significance of data-efficient learning in machine learning applications. Findings contribute to advancing biomass gasification for cleaner hydrogen production.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"401 ","pages":"Article 135883"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125016084","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Earth’s environmental challenges, such as climate change and pollution, require urgent emission reductions. A thermochemical method that transforms carbon-rich substances into syngas, biomass gasification produces clean hydrogen as a sustainable energy carrier. This process ensures high carbon conversion efficiency while minimizing greenhouse gas emissions. This study examines the gasification of nine biomass-lignite blends using fluidized-bed and fixed-bed gasifiers. A wide range of biomass samples blended with lignite enabled the analysis of different sample characteristics and their impact on the gasification technique. ASPEN Plus® simulations assess the effects of biomass-to-lignite ratio, equivalence ratio (ER), steam to biomass ratio (SBR), and reactor temperature on syngas fraction and system efficiency. Machine learning models gaussian process regression (GPR), random forest (RF), support vector machine (SVM), and decision tree (DT) predict syngas and product gas exergy values, providing a data-driven optimization approach. For hazelnut shell validation, R2 values were 0.98 for the fixed-bed model and 0.96 for the fluidized-bed model. The Random Forest algorithm demonstrated the highest accuracy (R2 = 0.93), outperforming other models. The study also analysed the amount of data required and demonstrated robust models capable of learning with limited data. Since a significant portion of the machine learning process involves dataset creation, the ability to learn from small datasets is crucial. This highlights the significance of data-efficient learning in machine learning applications. Findings contribute to advancing biomass gasification for cleaner hydrogen production.
利用机器学习算法估计合成气馏分和火用值在固定床和流化床气化生物质-褐煤混合物
地球面临的环境挑战,如气候变化和污染,迫切需要减少排放。生物质气化是一种将富含碳的物质转化为合成气的热化学方法,它产生清洁的氢气,作为一种可持续的能源载体。这一过程确保了高碳转化效率,同时最大限度地减少温室气体排放。本研究考察了使用流化床和固定床气化炉的九种生物质-褐煤混合物的气化。与褐煤混合的各种生物质样品可以分析不同的样品特征及其对气化技术的影响。ASPEN Plus®模拟评估生物质与褐煤比、等效比(ER)、蒸汽与生物质比(SBR)和反应器温度对合成气分数和系统效率的影响。机器学习模型高斯过程回归(GPR)、随机森林(RF)、支持向量机(SVM)和决策树(DT)预测合成气和成品气的火用值,提供数据驱动的优化方法。对于榛子壳验证,固定床模型的R2为0.98,流化床模型的R2为0.96。随机森林算法的准确率最高(R2 = 0.93),优于其他模型。该研究还分析了所需的数据量,并展示了能够在有限数据下进行学习的稳健模型。由于机器学习过程的很大一部分涉及数据集创建,因此从小数据集学习的能力至关重要。这凸显了数据高效学习在机器学习应用中的重要性。研究结果有助于推进生物质气化清洁制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信