Explainable artificial intelligence for predicting dengue outbreaks in Bangladesh using eco-climatic triggers

Md. Siddikur Rahman, Md. Abu Bokkor Shiddik
{"title":"Explainable artificial intelligence for predicting dengue outbreaks in Bangladesh using eco-climatic triggers","authors":"Md. Siddikur Rahman,&nbsp;Md. Abu Bokkor Shiddik","doi":"10.1016/j.gloepi.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Dengue represents a significant public health threat in Bangladesh, characterized by its complex ecological transmission dynamics. To improve dengue prevention and control efforts, firstly, we employ state-of-the-art artificial intelligence (AI) methods to identify the roles of eco-climatic factors in predicting dengue outbreaks in Bangladesh.</div></div><div><h3>Methods</h3><div>We utilize high-performance machine learning (ML) models, XGBoost and LightGBM, combined with explainable AI (XAI) methodologies to evaluate the predictive performance and impact of various dengue determinants in Bangladesh from 2000 to 2023. The LightGBM and XGBoost models were also utilized to predict dengue cases and early warning trends from 2024 to 2030. Climatic, socio-demographic, and landscape features were used to train these models; SHapley Additive Explanations (SHAP) values and LIME (Local Interpretable Model-agnostic Explanations) were used to interpret the results.</div></div><div><h3>Findings</h3><div>Between 2000 and 2023, Bangladesh experienced the highest number of dengue cases in August, while November saw the most fatalities. The XGBoost model excelled in predicting dengue outbreaks, achieving an AUC score of 0.89, a Log Loss of 0.64. Key predictors identified by the model include population density, precipitation, temperature, and land-use patterns. Additionally, Local Interpretable Model-agnostic Explanations (LIME) provided insights into the model's predictions, highlighting the significance of population density, relative humidity, and minimum temperature in dengue outbreaks.</div></div><div><h3>Interpretation</h3><div>This study showcases the potential of XAI in uncovering the complexities of dengue outbreaks, providing a robust tool for public health interventions. Our AI-driven framework can be utilized to generate prompt and timely alerts to prevent imminent dengue and other infectious disease outbreaks.</div></div>","PeriodicalId":36311,"journal":{"name":"Global Epidemiology","volume":"10 ","pages":"Article 100210"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590113325000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Dengue represents a significant public health threat in Bangladesh, characterized by its complex ecological transmission dynamics. To improve dengue prevention and control efforts, firstly, we employ state-of-the-art artificial intelligence (AI) methods to identify the roles of eco-climatic factors in predicting dengue outbreaks in Bangladesh.

Methods

We utilize high-performance machine learning (ML) models, XGBoost and LightGBM, combined with explainable AI (XAI) methodologies to evaluate the predictive performance and impact of various dengue determinants in Bangladesh from 2000 to 2023. The LightGBM and XGBoost models were also utilized to predict dengue cases and early warning trends from 2024 to 2030. Climatic, socio-demographic, and landscape features were used to train these models; SHapley Additive Explanations (SHAP) values and LIME (Local Interpretable Model-agnostic Explanations) were used to interpret the results.

Findings

Between 2000 and 2023, Bangladesh experienced the highest number of dengue cases in August, while November saw the most fatalities. The XGBoost model excelled in predicting dengue outbreaks, achieving an AUC score of 0.89, a Log Loss of 0.64. Key predictors identified by the model include population density, precipitation, temperature, and land-use patterns. Additionally, Local Interpretable Model-agnostic Explanations (LIME) provided insights into the model's predictions, highlighting the significance of population density, relative humidity, and minimum temperature in dengue outbreaks.

Interpretation

This study showcases the potential of XAI in uncovering the complexities of dengue outbreaks, providing a robust tool for public health interventions. Our AI-driven framework can be utilized to generate prompt and timely alerts to prevent imminent dengue and other infectious disease outbreaks.
利用生态气候触发器预测孟加拉国登革热疫情的可解释人工智能
登革热在孟加拉国是一个重大的公共卫生威胁,其特点是其复杂的生态传播动态。为了改善登革热预防和控制工作,首先,我们采用最先进的人工智能(AI)方法来确定生态气候因素在预测孟加拉国登革热疫情中的作用。方法利用高性能机器学习(ML)模型,XGBoost和LightGBM,结合可解释人工智能(XAI)方法,评估2000年至2023年孟加拉国各种登革热决定因素的预测性能和影响。利用LightGBM和XGBoost模型预测2024 - 2030年登革热病例和预警趋势。使用气候、社会人口和景观特征来训练这些模型;使用SHapley加性解释(SHAP)值和LIME (Local Interpretable Model-agnostic Explanations)来解释结果。在2000年至2023年期间,孟加拉国8月份的登革热病例最多,而11月份的死亡人数最多。XGBoost模型在预测登革热暴发方面表现出色,AUC得分为0.89,Log Loss为0.64。该模型确定的关键预测因子包括人口密度、降水、温度和土地利用模式。此外,局部可解释模型不可知解释(LIME)为模型预测提供了见解,强调了人口密度、相对湿度和最低温度在登革热暴发中的重要性。本研究展示了XAI在揭示登革热暴发复杂性方面的潜力,为公共卫生干预提供了强有力的工具。我们的人工智能驱动框架可用于产生迅速和及时的警报,以预防即将发生的登革热和其他传染病暴发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Epidemiology
Global Epidemiology Medicine-Infectious Diseases
CiteScore
5.00
自引率
0.00%
发文量
22
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信