Tulio J. Francisco , Bruno da Silva Macêdo , Zaher Mundher Yaseen , Nikolay O. Nikitin , Matteo Bodini , Angela Gorgoglione , Camila M. Saporetti , L. Goliatt
{"title":"Evolutionary polynomial modeling for interpretable drought prediction and resilient resource management","authors":"Tulio J. Francisco , Bruno da Silva Macêdo , Zaher Mundher Yaseen , Nikolay O. Nikitin , Matteo Bodini , Angela Gorgoglione , Camila M. Saporetti , L. Goliatt","doi":"10.1016/j.ecoinf.2025.103217","DOIUrl":null,"url":null,"abstract":"<div><div>Droughts are natural hazards that exist in nature and can have a serious impact on the environment and society, which includes water shortages, crop failures, fires and, in some cases, soil manipulation. To assess and predict droughts, various methods, such as the Standardized Precipitation Index (SPI), were designed to segregate drought trends and excess rainfall over a period ranging from 3 to 48 months. This study proposes an innovative approach to predicting drought use, the Evolutionary Polynomial Expansion with Feature Selection (EPEFS) model, a hybrid method that integrates polynomial regression with feature selection to increase accuracy and interpretability. The methodology was applied to historical precipitation data from six meteorological stations in Türkiye, covering the period from 1971 to 2016. The drought index Standardized Precipitation Index (SPI) was used as the primary indicator, with predictions made for three different time scales: SPI-3, SPI-6 and SPI-12. Furthermore, a time series cross-validation strategy was employed to ensure performance assessment. The EPEFS model obtained R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> coefficients of 0.880, 0.903 and 0.929 for SPI-3, SPI-6 and SPI-12, respectively, surpassing the other models analyzed. Furthermore, the model presented less complexity in the generated expressions. The results suggest that the EPEFS model holds promise as a robust and interpretable tool for drought forecasting, with potential applications in early warning systems and mitigation strategies.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"90 ","pages":"Article 103217"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125002262","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Droughts are natural hazards that exist in nature and can have a serious impact on the environment and society, which includes water shortages, crop failures, fires and, in some cases, soil manipulation. To assess and predict droughts, various methods, such as the Standardized Precipitation Index (SPI), were designed to segregate drought trends and excess rainfall over a period ranging from 3 to 48 months. This study proposes an innovative approach to predicting drought use, the Evolutionary Polynomial Expansion with Feature Selection (EPEFS) model, a hybrid method that integrates polynomial regression with feature selection to increase accuracy and interpretability. The methodology was applied to historical precipitation data from six meteorological stations in Türkiye, covering the period from 1971 to 2016. The drought index Standardized Precipitation Index (SPI) was used as the primary indicator, with predictions made for three different time scales: SPI-3, SPI-6 and SPI-12. Furthermore, a time series cross-validation strategy was employed to ensure performance assessment. The EPEFS model obtained R coefficients of 0.880, 0.903 and 0.929 for SPI-3, SPI-6 and SPI-12, respectively, surpassing the other models analyzed. Furthermore, the model presented less complexity in the generated expressions. The results suggest that the EPEFS model holds promise as a robust and interpretable tool for drought forecasting, with potential applications in early warning systems and mitigation strategies.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.