Laser direct writing of graphene-encapsulated MoNi4 nanoparticles on carbon cloth as a self-supporting electrode for enhanced electrochemical urea oxidation

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-06-07 DOI:10.1016/j.fuel.2025.135913
Xiaobing Liu, Yuzhou Sun, Zizheng Xing, Luhan Hou, Yi Nie, Tielong Li, Haitao Wang
{"title":"Laser direct writing of graphene-encapsulated MoNi4 nanoparticles on carbon cloth as a self-supporting electrode for enhanced electrochemical urea oxidation","authors":"Xiaobing Liu,&nbsp;Yuzhou Sun,&nbsp;Zizheng Xing,&nbsp;Luhan Hou,&nbsp;Yi Nie,&nbsp;Tielong Li,&nbsp;Haitao Wang","doi":"10.1016/j.fuel.2025.135913","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-based catalysts have garnered significant attention for the urea oxidation reaction (UOR), primarily due to the pivotal role of NiOOH as the active phase. However, practical applications are often hindered by poor electrical conductivity and sluggish Ni2<sup>+</sup>/Ni3<sup>+</sup> redox transitions. In this work, we present a self-supporting electrode composed of graphene encapsulated Mo-doped nickel nanoparticles grown on carbon cloth (NiMo/G/CC). The strategic Mo doping not only enhances the formation of NiOOH by accelerating the Ni2<sup>+</sup>→Ni3<sup>+</sup> transition but also modulates the electronic structure in synergy with graphene’s high conductivity. Consequently, the optimized electrode achieves an impressive current density of 100 mA cm<sup>−</sup>2 at 1.38 V vs. RHE, outperforming many state-of-the-art UOR catalysts. Furthermore, the protective graphene encapsulation greatly improves electrode stability under prolonged operation.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"401 ","pages":"Article 135913"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125016382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-based catalysts have garnered significant attention for the urea oxidation reaction (UOR), primarily due to the pivotal role of NiOOH as the active phase. However, practical applications are often hindered by poor electrical conductivity and sluggish Ni2+/Ni3+ redox transitions. In this work, we present a self-supporting electrode composed of graphene encapsulated Mo-doped nickel nanoparticles grown on carbon cloth (NiMo/G/CC). The strategic Mo doping not only enhances the formation of NiOOH by accelerating the Ni2+→Ni3+ transition but also modulates the electronic structure in synergy with graphene’s high conductivity. Consequently, the optimized electrode achieves an impressive current density of 100 mA cm2 at 1.38 V vs. RHE, outperforming many state-of-the-art UOR catalysts. Furthermore, the protective graphene encapsulation greatly improves electrode stability under prolonged operation.
石墨烯包封的mon4纳米粒子在碳布上的激光直写作为自支撑电极用于增强电化学尿素氧化
镍基催化剂在尿素氧化反应(UOR)中引起了广泛的关注,主要是因为NiOOH作为活性相的关键作用。然而,实际应用往往受到电导率差和Ni2+/Ni3+氧化还原转变缓慢的阻碍。在这项工作中,我们提出了一种由石墨烯封装的mo掺杂镍纳米粒子组成的自支撑电极,该电极生长在碳布上(NiMo/G/CC)。Mo掺杂不仅通过加速Ni2+→Ni3+的转变促进了NiOOH的形成,而且还与石墨烯的高导电性协同调节了电子结构。因此,优化后的电极在1.38 V时的电流密度为100 mA cm - 2,优于许多最先进的UOR催化剂。此外,保护石墨烯封装大大提高了电极在长时间工作下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信