Cryogenic fracturing of coal with LN2 treatment: A sustainable approach for enhancing coalbed methane extraction in water-scarce regions

IF 5.5 0 ENERGY & FUELS
Sotirios Nik Longinos , Dastan Begaliyev , Mohammad Asif , Mirlan Tuleugaliyev
{"title":"Cryogenic fracturing of coal with LN2 treatment: A sustainable approach for enhancing coalbed methane extraction in water-scarce regions","authors":"Sotirios Nik Longinos ,&nbsp;Dastan Begaliyev ,&nbsp;Mohammad Asif ,&nbsp;Mirlan Tuleugaliyev","doi":"10.1016/j.jgsce.2025.205686","DOIUrl":null,"url":null,"abstract":"<div><div>Alteration of the pore space in coal fractured by liquid nitrogen (LN<sub>2</sub>) significantly influences the coalbed methane (CBM) process to overall porosity, effective permeability, pore rugosity, and adsorption capacity. The impact of LN<sub>2</sub> treatment on the pore structures of coal samples from the Karaganda Coal Basin, Kazakhstan, was analyzed to enhance CBM extraction. This study employs Mercury Intrusion Porosimetry (MIP) and Low-Pressure Nitrogen Gas Adsorption (LN2GA) isotherm for analyzing the effects of varying freezing times and freezing-thawing cycles on the pore structure of coal. The maximum nitrogen adsorption capacity (25.02 cc/g) and the total injected mercury volume (0.226 cc/g) in the specimens were positively correlated (R<sup>2</sup> = 0.98) with the total freezing time and the number of freezing-thawing cycles. As LN<sub>2</sub> freezing time increases, fractal dimensions decrease, indicating a more uniform pore structure. The values drop from D1 = 2.43, D2 = 2.80 (0 min) to D1 = 2.17, D2 = 2.62 (180 min), suggesting reduced roughness and complexity. The peak intrusion volumes increased from 0.185 cm<sup>3</sup>/g (0 min) to 0.217 cm<sup>3</sup>/g (180 min), indicating that prolonged freezing expands the coal structure to create additional pores. Ejection efficiency improved from 68.32 % (0 min) to 77.22 % (180 min), reflecting better pore connectivity as the freezing duration increases. This study is paramount in the cryogenic fracturing of coal formation and may be opted against hydraulic fracturing for various industrial applications in water-scare regions.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"142 ","pages":"Article 205686"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Alteration of the pore space in coal fractured by liquid nitrogen (LN2) significantly influences the coalbed methane (CBM) process to overall porosity, effective permeability, pore rugosity, and adsorption capacity. The impact of LN2 treatment on the pore structures of coal samples from the Karaganda Coal Basin, Kazakhstan, was analyzed to enhance CBM extraction. This study employs Mercury Intrusion Porosimetry (MIP) and Low-Pressure Nitrogen Gas Adsorption (LN2GA) isotherm for analyzing the effects of varying freezing times and freezing-thawing cycles on the pore structure of coal. The maximum nitrogen adsorption capacity (25.02 cc/g) and the total injected mercury volume (0.226 cc/g) in the specimens were positively correlated (R2 = 0.98) with the total freezing time and the number of freezing-thawing cycles. As LN2 freezing time increases, fractal dimensions decrease, indicating a more uniform pore structure. The values drop from D1 = 2.43, D2 = 2.80 (0 min) to D1 = 2.17, D2 = 2.62 (180 min), suggesting reduced roughness and complexity. The peak intrusion volumes increased from 0.185 cm3/g (0 min) to 0.217 cm3/g (180 min), indicating that prolonged freezing expands the coal structure to create additional pores. Ejection efficiency improved from 68.32 % (0 min) to 77.22 % (180 min), reflecting better pore connectivity as the freezing duration increases. This study is paramount in the cryogenic fracturing of coal formation and may be opted against hydraulic fracturing for various industrial applications in water-scare regions.
煤低温压裂与LN2处理:提高缺水地区煤层气开采的可持续方法
液氮(LN2)对裂隙煤孔隙空间的改变显著影响煤层气的整体孔隙度、有效渗透率、孔隙粗糙度和吸附能力。以哈萨克斯坦Karaganda煤盆地为研究对象,分析了LN2处理对煤样孔隙结构的影响。采用压汞孔隙法(MIP)和低压氮气吸附(LN2GA)等温线分析了不同冻结时间和冻融循环对煤孔隙结构的影响。试件最大氮吸附量(25.02 cc/g)和总注入汞体积(0.226 cc/g)与总冻结时间和冻融循环次数呈正相关(R2 = 0.98)。随着LN2冻结时间的延长,分形维数减小,表明孔隙结构更加均匀。数值从D1 = 2.43, D2 = 2.80 (0 min)下降到D1 = 2.17, D2 = 2.62 (180 min),表明粗糙度和复杂性降低。峰值侵入体积从0.185 cm3/g (0 min)增加到0.217 cm3/g (180 min),表明长时间冻结扩大了煤的结构,产生了额外的孔隙。喷射效率从68.32% (0 min)提高到77.22% (180 min),反映出随着冻结时间的延长孔隙连通性更好。这项研究对煤地层的低温压裂具有重要意义,并可能在水资源匮乏地区的各种工业应用中替代水力压裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信