{"title":"Characterizations of the canonical trace on full matrix algebras","authors":"Mohammad Sal Moslehian , Airat M. Bikchentaev","doi":"10.1016/j.jmaa.2025.129764","DOIUrl":null,"url":null,"abstract":"<div><div>We establish that a positive linear functional on the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a positive multiple of the canonical trace if and only if <span><math><mi>φ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>)</mo></math></span> implies that <em>A</em> is positive semidefinite. Furthermore, we characterize the canonical trace on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> among all positive linear functionals <em>φ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>φ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>n</mi></math></span> via Yang's inequality <span><math><mi>φ</mi><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≤</mo><mi>φ</mi><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, where <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are positive semidefinite matrices.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129764"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005451","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish that a positive linear functional on the full matrix algebra is a positive multiple of the canonical trace if and only if implies that A is positive semidefinite. Furthermore, we characterize the canonical trace on among all positive linear functionals φ on with via Yang's inequality , where are positive semidefinite matrices.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.