On length-preserving and area-preserving inverse curvature flow of planar curves with singularities

IF 2.4 2区 数学 Q1 MATHEMATICS
Yunlong Yang , Yanwen Zhao , Jianbo Fang , Yanlong Zhang
{"title":"On length-preserving and area-preserving inverse curvature flow of planar curves with singularities","authors":"Yunlong Yang ,&nbsp;Yanwen Zhao ,&nbsp;Jianbo Fang ,&nbsp;Yanlong Zhang","doi":"10.1016/j.jde.2025.113517","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to investigate the evolution problem for planar curves with singularities. Motivated by the inverse curvature flow introduced by Li and Wang (2023) <span><span>[33]</span></span>, we intend to consider the area-preserving and length-preserving inverse curvature flow with nonlocal term for <em>ℓ</em>-convex Legendre curves. For the area-preserving flow, an <em>ℓ</em>-convex Legendre curve with initial algebraic area <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> evolves to a circle of radius <span><math><msqrt><mrow><mfrac><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>π</mi></mrow></mfrac></mrow></msqrt></math></span>. For the length-preserving flow, an <em>ℓ</em>-convex Legendre curve with initial algebraic length <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> evolves to a circle of radius <span><math><mfrac><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></math></span>. As the by-product, we obtain some geometric inequalities for <em>ℓ</em>-convex Legendre curves through the length-preserving flow.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113517"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005443","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to investigate the evolution problem for planar curves with singularities. Motivated by the inverse curvature flow introduced by Li and Wang (2023) [33], we intend to consider the area-preserving and length-preserving inverse curvature flow with nonlocal term for -convex Legendre curves. For the area-preserving flow, an -convex Legendre curve with initial algebraic area A0>0 evolves to a circle of radius A0π. For the length-preserving flow, an -convex Legendre curve with initial algebraic length L0 evolves to a circle of radius L02π. As the by-product, we obtain some geometric inequalities for -convex Legendre curves through the length-preserving flow.
具有奇异点的平面曲线的保长保面积逆曲率流
研究具有奇异点的平面曲线的演化问题。受Li和Wang(2023)[33]引入的逆曲率流的启发,我们打算考虑具有非局域项的保面积和保长度逆曲率流。对于保面积流,初始代数面积为A0>;0的l -凸Legendre曲线演化为半径为A0π的圆。对于保长流,初始代数长度为L0的l -凸Legendre曲线演化为半径为L02π的圆。作为副产物,我们通过保长流得到了一些几何不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信