Synthesis of reduced graphene oxide decorated with cuprite nanoparticles for energy-storage devices: Dielectric properties and electrical conductivity

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
S.M. Al-Moayid , H. Algarni , H. Elhosiny Ali , Yasmin Khairy
{"title":"Synthesis of reduced graphene oxide decorated with cuprite nanoparticles for energy-storage devices: Dielectric properties and electrical conductivity","authors":"S.M. Al-Moayid ,&nbsp;H. Algarni ,&nbsp;H. Elhosiny Ali ,&nbsp;Yasmin Khairy","doi":"10.1016/j.physb.2025.417490","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports a single‐step hydrothermal synthesis of reduced graphene oxide (rGO) uniformly decorated with cuprite (Cu<sub>2</sub>O) nanoparticles. Unlike conventional multi-step methods, this approach enables in-situ reduction and nanoparticle anchoring in a single step, ensuring strong interfacial contact and uniform Cu<sub>2</sub>O NP dispersion (7–43 nm) across the rGO sheets. By adjusting the Cu<sub>2</sub>O loading up to 0.05 g, the indirect bandgap narrows from 1.97 eV (pure rGO) to 0.12 eV, and the direct bandgap from 4.0 eV to 2.6 eV. At 1 kHz, the real permittivity (<em>ε</em>′) rises from ∼145 (rGO) to &gt;230 (rGO/0.05 g Cu<sub>2</sub>O), indicating ≈60 % increase in energy‐storage capability. AC conductivity increases by nearly two orders of magnitude compared to bare rGO, reflecting enhanced carrier mobility and defect‐state hopping induced by Cu<sub>2</sub>O. XRD, Raman, XPS, and TEM all confirm effective GO reduction and crystalline Cu<sub>2</sub>O formation with strong interfacial contact. These tunable improvements demonstrate that Cu<sub>2</sub>O/rGO nanocomposites are promising for flexible electronics, high‐performance supercapacitors, and optoelectronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417490"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006076","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports a single‐step hydrothermal synthesis of reduced graphene oxide (rGO) uniformly decorated with cuprite (Cu2O) nanoparticles. Unlike conventional multi-step methods, this approach enables in-situ reduction and nanoparticle anchoring in a single step, ensuring strong interfacial contact and uniform Cu2O NP dispersion (7–43 nm) across the rGO sheets. By adjusting the Cu2O loading up to 0.05 g, the indirect bandgap narrows from 1.97 eV (pure rGO) to 0.12 eV, and the direct bandgap from 4.0 eV to 2.6 eV. At 1 kHz, the real permittivity (ε′) rises from ∼145 (rGO) to >230 (rGO/0.05 g Cu2O), indicating ≈60 % increase in energy‐storage capability. AC conductivity increases by nearly two orders of magnitude compared to bare rGO, reflecting enhanced carrier mobility and defect‐state hopping induced by Cu2O. XRD, Raman, XPS, and TEM all confirm effective GO reduction and crystalline Cu2O formation with strong interfacial contact. These tunable improvements demonstrate that Cu2O/rGO nanocomposites are promising for flexible electronics, high‐performance supercapacitors, and optoelectronic applications.
用于储能器件的铜纳米粒子修饰的还原氧化石墨烯的合成:介电性能和导电性
这项工作报告了一步水热合成还原氧化石墨烯(rGO)均匀装饰的铜(Cu2O)纳米颗粒。与传统的多步骤方法不同,该方法可以在一个步骤中实现原位还原和纳米颗粒锚定,确保强界面接触和均匀的Cu2O NP分散(7-43 nm)在氧化石墨烯薄片上。通过调整Cu2O的负载量至0.05 g,间接带隙从1.97 eV(纯rGO)缩小到0.12 eV,直接带隙从4.0 eV缩小到2.6 eV。在1khz时,实际介电常数(ε′)从~ 145 (rGO)上升到>;230 (rGO/0.05 g Cu2O),表明储能能力提高了约60%。与裸氧化石墨烯相比,交流电导率增加了近两个数量级,反映了Cu2O诱导的载流子迁移率和缺陷态跳变的增强。XRD、Raman、XPS和TEM均证实了氧化石墨烯的有效还原和Cu2O的形成,界面接触强。这些可调的改进表明,Cu2O/rGO纳米复合材料在柔性电子、高性能超级电容器和光电子应用方面前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信