Yangyang Zheng , Ziyao Wang , Jianbo Li , Zhouxiao Geng , Tao Chen , Zhiwen Wang
{"title":"Construction of a genome-engineered stable 5-aminolevulinic acid producing Corynebacterium glutamicum by increasing succinyl-CoA supply","authors":"Yangyang Zheng , Ziyao Wang , Jianbo Li , Zhouxiao Geng , Tao Chen , Zhiwen Wang","doi":"10.1016/j.synbio.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>5-Aminolevulinic acid (5-ALA), a versatile precursor for tetrapyrrole derivatives (such as heme, chlorophyll, and cobalamin), drives advancing microbial cell factories to meet growing biomedical and industrial demands. However, there remain two challenges that limit yield and scalability: the limitations of conventional plasmid-based gene expression systems and the lack of fine regulation of succinyl-CoA. In this study, to address these limitations, we integrated multiple copies of <em>hemA</em><sup><em>C132A</em></sup> of the heterologous C4 pathway on the genome. For fine regulating the supply of succinyl-CoA, the genes related to the tricarboxylic acid cycle (TCA cycle) oxidation branch pathway were combinatorially screened. The optimal combination of <em>icd</em> and <em>lpd</em> was confirmed by ribosome binding site (RBS) engineering, which was integrated on the genome with optimized expression intensity. Succinyl-CoA supply was further increased by genome integration and expression optimization of key CoA biosynthetic gene <em>coaA</em>, pantothenic acid synthesis-related gene <em>panB-panC</em>, and β-alanine synthesis-related gene <em>panD</em>. The optimized genomically stable chassis achieved a high 5-ALA production of 6.38 ± 0.16 g/L, which was 8.63-fold higher than the single <em>hemA</em><sup><em>C132A</em></sup> copy strain A1 (0.74 ± 0.07 g/L). From these findings, a stable and high-yield 5-ALA synthetic strain was successfully constructed, providing a new strategy for production of biochemicals derived from succinyl-CoA in <em>C. glutamicum</em>.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 3","pages":"Pages 1070-1076"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000857","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
5-Aminolevulinic acid (5-ALA), a versatile precursor for tetrapyrrole derivatives (such as heme, chlorophyll, and cobalamin), drives advancing microbial cell factories to meet growing biomedical and industrial demands. However, there remain two challenges that limit yield and scalability: the limitations of conventional plasmid-based gene expression systems and the lack of fine regulation of succinyl-CoA. In this study, to address these limitations, we integrated multiple copies of hemAC132A of the heterologous C4 pathway on the genome. For fine regulating the supply of succinyl-CoA, the genes related to the tricarboxylic acid cycle (TCA cycle) oxidation branch pathway were combinatorially screened. The optimal combination of icd and lpd was confirmed by ribosome binding site (RBS) engineering, which was integrated on the genome with optimized expression intensity. Succinyl-CoA supply was further increased by genome integration and expression optimization of key CoA biosynthetic gene coaA, pantothenic acid synthesis-related gene panB-panC, and β-alanine synthesis-related gene panD. The optimized genomically stable chassis achieved a high 5-ALA production of 6.38 ± 0.16 g/L, which was 8.63-fold higher than the single hemAC132A copy strain A1 (0.74 ± 0.07 g/L). From these findings, a stable and high-yield 5-ALA synthetic strain was successfully constructed, providing a new strategy for production of biochemicals derived from succinyl-CoA in C. glutamicum.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.