Capturing CO2 and flue gas carbon by Methanosarcina mazei Go1 and Methanothermobacter thermautotrophicus ΔH

Q1 Environmental Science
Dhayanithi Sethuraman, Chellapandi Paulchamy
{"title":"Capturing CO2 and flue gas carbon by Methanosarcina mazei Go1 and Methanothermobacter thermautotrophicus ΔH","authors":"Dhayanithi Sethuraman,&nbsp;Chellapandi Paulchamy","doi":"10.1016/j.biteb.2025.102149","DOIUrl":null,"url":null,"abstract":"<div><div>Methane production from CO<sub>2</sub> and flue gas by <em>Methanosarcina mazei Gö1</em> and <em>Methanothermobacter thermautotrophicus</em> ∆H was evaluated under various environmental and nutritional conditions to optimize methane production. <em>M. thermautotrophicus</em> exhibited optimal methane production at 60 °C, yielding 18.64 ± 0.75 μmol L<sup>−1</sup>, whereas <em>M. mazei</em> demonstrated peak activity at 35 °C with CO<sub>2</sub> and 40 °C with flue gas, <em>albeit</em> with lower yields under thermophilic conditions. The optimal pH for <em>M. thermautotrophicus</em> was 5, producing 18.48 ± 0.75 μmol L<sup>−1</sup> of methane with CO<sub>2</sub>, while <em>M. mazei</em> preferred a neutral pH for maximal methane production. Methane production in <em>M. thermautotrophicus</em> was significantly increased at 200 kPa, resulting in a methane content of 13.84 ± 0.55 μmol L<sup>−1</sup> with flue gas. Organic nitrogen sources significantly improved methane yields; peptone and soybean meal enhanced methane production to 18.64 ± 0.75 μmol L<sup>−1</sup> and 13.84 ± 0.55 μmol L<sup>−1</sup>, respectively, in <em>M. thermautotrophicus</em>. Inorganic nitrogen sources, particularly NaNO<sub>2</sub>, also supported higher methane production, achieving 11.70 ± 0.47 μmol L<sup>−1</sup> with flue gas. Phosphate and sulfate supplementation were critical; <em>M. thermautotrophicus</em> exhibited maximum activity with Na<sub>2</sub>HPO<sub>4</sub> (3.35 ± 0.13 μmol L<sup>−1</sup>) and FeSO<sub>4</sub> (7.98 ± 0.32 μmol L<sup>−1</sup>) under CO<sub>2</sub> conditions. The optimal inoculum densities were determined to be 5–10 % for <em>M. thermautotrophicus</em> and 15 % for <em>M. mazei</em>. Therefore, the integration of these methanogens into biogas systems offers a promising approach for efficient CO<sub>2</sub> and flue gas conversion, indicating their potential for sustainable bioenergy production and greenhouse gas mitigation.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"30 ","pages":"Article 102149"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Methane production from CO2 and flue gas by Methanosarcina mazei Gö1 and Methanothermobacter thermautotrophicus ∆H was evaluated under various environmental and nutritional conditions to optimize methane production. M. thermautotrophicus exhibited optimal methane production at 60 °C, yielding 18.64 ± 0.75 μmol L−1, whereas M. mazei demonstrated peak activity at 35 °C with CO2 and 40 °C with flue gas, albeit with lower yields under thermophilic conditions. The optimal pH for M. thermautotrophicus was 5, producing 18.48 ± 0.75 μmol L−1 of methane with CO2, while M. mazei preferred a neutral pH for maximal methane production. Methane production in M. thermautotrophicus was significantly increased at 200 kPa, resulting in a methane content of 13.84 ± 0.55 μmol L−1 with flue gas. Organic nitrogen sources significantly improved methane yields; peptone and soybean meal enhanced methane production to 18.64 ± 0.75 μmol L−1 and 13.84 ± 0.55 μmol L−1, respectively, in M. thermautotrophicus. Inorganic nitrogen sources, particularly NaNO2, also supported higher methane production, achieving 11.70 ± 0.47 μmol L−1 with flue gas. Phosphate and sulfate supplementation were critical; M. thermautotrophicus exhibited maximum activity with Na2HPO4 (3.35 ± 0.13 μmol L−1) and FeSO4 (7.98 ± 0.32 μmol L−1) under CO2 conditions. The optimal inoculum densities were determined to be 5–10 % for M. thermautotrophicus and 15 % for M. mazei. Therefore, the integration of these methanogens into biogas systems offers a promising approach for efficient CO2 and flue gas conversion, indicating their potential for sustainable bioenergy production and greenhouse gas mitigation.
mazei甲烷菌Go1和热自养甲烷菌ΔH捕集CO2和烟气碳
在不同的环境和营养条件下,对mazei Methanosarcina Gö1和热自养Methanothermobacter thermautotrophicus∆H从CO2和烟气中产甲烷进行了评价,以优化甲烷产量。热自养M.在60°C条件下甲烷产量最佳,产气量为18.64±0.75 μmol L−1,而mazei在35°C CO2和40°C烟气条件下甲烷产量最高,但在嗜热条件下甲烷产量较低。热自养m.c oricus的最适pH为5,与CO2一起产生18.48±0.75 μmol L−1甲烷,而mazei则倾向于中性pH以产生最大的甲烷。在200 kPa下,热自养沼气池甲烷产量显著增加,烟气中甲烷含量为13.84±0.55 μmol L−1。有机氮源显著提高甲烷产量;蛋白胨和豆粕使热自养沼虾的甲烷产量分别达到18.64±0.75 μmol L−1和13.84±0.55 μmol L−1。无机氮源,特别是NaNO2,也支持更高的甲烷产量,在烟气中达到11.70±0.47 μmol L−1。磷酸盐和硫酸盐的补充至关重要;对Na2HPO4(3.35±0.13 μmol L−1)和FeSO4(7.98±0.32 μmol L−1)的活性在CO2条件下最高。热自养m.m .的最佳接种密度为5 ~ 10%,马泽m.m .的最佳接种密度为15%。因此,将这些产甲烷菌整合到沼气系统中为有效转化二氧化碳和烟气提供了一种很有希望的方法,表明它们在可持续生物能源生产和减少温室气体方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信