Bredon motivic cohomology of the real numbers

IF 0.7 2区 数学 Q2 MATHEMATICS
Bill Deng, Mircea Voineagu
{"title":"Bredon motivic cohomology of the real numbers","authors":"Bill Deng,&nbsp;Mircea Voineagu","doi":"10.1016/j.jpaa.2025.108016","DOIUrl":null,"url":null,"abstract":"<div><div>Over the real numbers with <span><math><mi>Z</mi><mo>/</mo><mn>2</mn></math></span>-coefficients, we compute the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant Borel motivic cohomology ring, the Bredon motivic cohomology groups and prove that the Bredon motivic cohomology ring of real numbers is a proper subring in the <span><math><mi>R</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-graded Bredon cohomology ring of a point.</div><div>This generalizes Voevodsky's computation of the motivic cohomology ring of the real numbers to the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant setting. These computations are extended afterwards to any real closed field.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108016"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001550","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the real numbers with Z/2-coefficients, we compute the C2-equivariant Borel motivic cohomology ring, the Bredon motivic cohomology groups and prove that the Bredon motivic cohomology ring of real numbers is a proper subring in the RO(C2×C2)-graded Bredon cohomology ring of a point.
This generalizes Voevodsky's computation of the motivic cohomology ring of the real numbers to the C2-equivariant setting. These computations are extended afterwards to any real closed field.
实数的布雷登动机上同
在Z/2系数实数上,我们计算了c2等变的Borel动机上同环和Bredon动机上同群,并证明了实数的Bredon动机上同环是点的RO(C2×C2)-梯度Bredon上同环中的真子环。这将Voevodsky关于实数的动机上同环的计算推广到c2等变情况。然后将这些计算推广到任何实闭场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信