Dual-responsive zwitterionic nanogels with synergistic charge reversal and hypoxia-activated drug release for precise tumor targeting and enhanced chemotherapy
Yuan Liao , Zhihao Wang , Mengyao Guo , Yingying Yang , Xinyang Chu , Leitao Zhang , Wenlan Wu , Junbo Li , Qiuli Cheng
{"title":"Dual-responsive zwitterionic nanogels with synergistic charge reversal and hypoxia-activated drug release for precise tumor targeting and enhanced chemotherapy","authors":"Yuan Liao , Zhihao Wang , Mengyao Guo , Yingying Yang , Xinyang Chu , Leitao Zhang , Wenlan Wu , Junbo Li , Qiuli Cheng","doi":"10.1016/j.colsurfb.2025.114839","DOIUrl":null,"url":null,"abstract":"<div><div>Developing nanomedicine delivery systems that respond to endogenous stimuli from the tumor microenvironment for the precise tumor targeting and controlled release of chemotherapeutic drugs has become a promising candidate to enhance cancer therapy. Here, we designed a zwitterionic nanogel system (named PMm) with charge-switchable and hypoxia-responsive properties for tumor targeting and on-demand drug release. PMm was synthesized through precipitation polymerization, strategically integrating a sulfamide-quaternary ammonium zwitterionic monomer (MPTA) and an azobenzene (azo) based crosslinker (MEFA). In the weakly acidic tumor microenvironment, PMm@DOX nanogels underwent a rapid surface charge reversal (to positive) via protonation of imine moieties, promoting deep tumor penetration and cellular uptake. Following cellular internalization, hypoxia-activated cleavage of the MEFA crosslinker induced the nanogel disassembly and DOX release, leading to the apoptosis of tumor cells. <em>In vitro</em> and <em>in vivo</em> studies demonstrated this dual-responsive nanogel platform synergistically integrated charge-driven targeting and hypoxia-triggered drug release, overcoming the limitations of conventional nanocarriers, enhancing tumor accumulation and showing superior antitumor efficacy. By intelligent surface engineering and microenvironmental responsiveness, the PMm@DOX system represents a promising strategy to amplify chemotherapeutic efficacy while minimizing off-target toxicity.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"254 ","pages":"Article 114839"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525003467","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing nanomedicine delivery systems that respond to endogenous stimuli from the tumor microenvironment for the precise tumor targeting and controlled release of chemotherapeutic drugs has become a promising candidate to enhance cancer therapy. Here, we designed a zwitterionic nanogel system (named PMm) with charge-switchable and hypoxia-responsive properties for tumor targeting and on-demand drug release. PMm was synthesized through precipitation polymerization, strategically integrating a sulfamide-quaternary ammonium zwitterionic monomer (MPTA) and an azobenzene (azo) based crosslinker (MEFA). In the weakly acidic tumor microenvironment, PMm@DOX nanogels underwent a rapid surface charge reversal (to positive) via protonation of imine moieties, promoting deep tumor penetration and cellular uptake. Following cellular internalization, hypoxia-activated cleavage of the MEFA crosslinker induced the nanogel disassembly and DOX release, leading to the apoptosis of tumor cells. In vitro and in vivo studies demonstrated this dual-responsive nanogel platform synergistically integrated charge-driven targeting and hypoxia-triggered drug release, overcoming the limitations of conventional nanocarriers, enhancing tumor accumulation and showing superior antitumor efficacy. By intelligent surface engineering and microenvironmental responsiveness, the PMm@DOX system represents a promising strategy to amplify chemotherapeutic efficacy while minimizing off-target toxicity.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.