Michail Vourakis , Elias Zea , Mikael Karlsson , Niklas Andersson , Sassan Etemad
{"title":"Installation effects on axial fans: Combined aeroacoustic and psychoacoustic perspective","authors":"Michail Vourakis , Elias Zea , Mikael Karlsson , Niklas Andersson , Sassan Etemad","doi":"10.1016/j.apacoust.2025.110872","DOIUrl":null,"url":null,"abstract":"<div><div>Low-speed axial fans for engineering cooling applications are often operating in the vicinity of humans. Over the last decades, an effort to mitigate fan noise has been observed. Novel fan designs with substantial noise abatement and little to no expense on aerodynamic performance have been achieved. However, the case of unfavorable installation conditions, namely fans immersed in non-ideal inlet flows, still complicates the optimization of fan designs with regard to acoustic performance. In this study, the acoustic performance alteration of a low-speed axial fan with a rotating ring is documented. Different inlet geometries are tested, while the fan aerodynamic performance is also monitored. The acoustic performance of the fan, including sound power and sound quality metrics, is discussed for three operating points. Furthermore, a parallel fan setup is tested to study the emergence of acoustic interference. Results show marginal gains in aerodynamic performance for elongated inlet geometries. On the contrary, acoustic performance and sound quality are negatively affected, particularly at high loading. Moreover, the inlet configuration with an elongated straight duct demonstrates weak coupling to loading conditions concerning sound power and roughness. An overall consistent scaling of aerodynamic and acoustic performance is observed for the parallel fan system when compared to the single fan case, irrespective of inlet geometry. Sound quality estimates of two incoherent sound sources agree well with measured values of the parallel fan system, apart from fluctuation strength, which is overestimated at stall conditions.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110872"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003445","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-speed axial fans for engineering cooling applications are often operating in the vicinity of humans. Over the last decades, an effort to mitigate fan noise has been observed. Novel fan designs with substantial noise abatement and little to no expense on aerodynamic performance have been achieved. However, the case of unfavorable installation conditions, namely fans immersed in non-ideal inlet flows, still complicates the optimization of fan designs with regard to acoustic performance. In this study, the acoustic performance alteration of a low-speed axial fan with a rotating ring is documented. Different inlet geometries are tested, while the fan aerodynamic performance is also monitored. The acoustic performance of the fan, including sound power and sound quality metrics, is discussed for three operating points. Furthermore, a parallel fan setup is tested to study the emergence of acoustic interference. Results show marginal gains in aerodynamic performance for elongated inlet geometries. On the contrary, acoustic performance and sound quality are negatively affected, particularly at high loading. Moreover, the inlet configuration with an elongated straight duct demonstrates weak coupling to loading conditions concerning sound power and roughness. An overall consistent scaling of aerodynamic and acoustic performance is observed for the parallel fan system when compared to the single fan case, irrespective of inlet geometry. Sound quality estimates of two incoherent sound sources agree well with measured values of the parallel fan system, apart from fluctuation strength, which is overestimated at stall conditions.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.