Expanding our understanding of (mal)adapted stress physiology in psychiatric disorders: achieving single-cell characterisation of steroids and neuropeptides
{"title":"Expanding our understanding of (mal)adapted stress physiology in psychiatric disorders: achieving single-cell characterisation of steroids and neuropeptides","authors":"Katrina Z. Edmond , Natalie Matosin","doi":"10.1016/j.ynstr.2025.100739","DOIUrl":null,"url":null,"abstract":"<div><div>Steroid hormones and neurosteroids (collectively neuroactive steroids), alongside neuropeptides, are key modulators of the central nervous system. These signalling molecules integrate environmental cues into neurobiological responses by regulating gene and protein expression in a cell-type-specific manner. Specifically, neuroactive steroids and neuropeptides modulate the hypothalamic-pituitary-adrenal axis to influence excitatory/inhibitory balance in the brain and broadly impact mood, cognition, and memory. Despite their central role in brain function, these signalling systems remain historically understudied, exposing a major gap in our understanding of stress-related psychiatric disorders, and posing a valuable opportunity for therapeutic innovation. Foundational studies using histology, genetic manipulation, and bulk transcriptomic approaches, primarily in rodent models, have provided critical insights into their roles. However, these traditional methods lack the resolution to capture region- and cell-specific mechanisms, which are needed to develop precision medicine approaches. The emergence of single-cell and spatial technologies now offers unprecedented insight into the precise cellular, molecular and spatial context in which neuroactive steroid and neuropeptide signalling occurs. By moving beyond cell-type-averaged measures, these tools enable detailed mapping of transcriptional and proteomic changes across specific brain areas and cell-types, helping to identify the microenvironments in which these systems become dysregulated. This review synthesises current knowledge of neuroactive steroids and neuropeptides in stress biology and psychiatric illness and discusses how cutting-edge molecular profiling technologies are beginning to transform our ability to study, and therapeutically target, this complex and dynamic neuroendocrine network.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"37 ","pages":"Article 100739"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289525000335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Steroid hormones and neurosteroids (collectively neuroactive steroids), alongside neuropeptides, are key modulators of the central nervous system. These signalling molecules integrate environmental cues into neurobiological responses by regulating gene and protein expression in a cell-type-specific manner. Specifically, neuroactive steroids and neuropeptides modulate the hypothalamic-pituitary-adrenal axis to influence excitatory/inhibitory balance in the brain and broadly impact mood, cognition, and memory. Despite their central role in brain function, these signalling systems remain historically understudied, exposing a major gap in our understanding of stress-related psychiatric disorders, and posing a valuable opportunity for therapeutic innovation. Foundational studies using histology, genetic manipulation, and bulk transcriptomic approaches, primarily in rodent models, have provided critical insights into their roles. However, these traditional methods lack the resolution to capture region- and cell-specific mechanisms, which are needed to develop precision medicine approaches. The emergence of single-cell and spatial technologies now offers unprecedented insight into the precise cellular, molecular and spatial context in which neuroactive steroid and neuropeptide signalling occurs. By moving beyond cell-type-averaged measures, these tools enable detailed mapping of transcriptional and proteomic changes across specific brain areas and cell-types, helping to identify the microenvironments in which these systems become dysregulated. This review synthesises current knowledge of neuroactive steroids and neuropeptides in stress biology and psychiatric illness and discusses how cutting-edge molecular profiling technologies are beginning to transform our ability to study, and therapeutically target, this complex and dynamic neuroendocrine network.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.