{"title":"The balancing act between lipid droplets and lysosomes for membrane functionality in age-related neurodegeneration and inflammation","authors":"Mariana I. Tsap , Halyna R. Shcherbata","doi":"10.1016/j.plipres.2025.101341","DOIUrl":null,"url":null,"abstract":"<div><div>Age-related neurodegenerative disorders are often associated with disruptions in lipid metabolism. A critical aspect is the impairment of the interaction between lipid droplets (LDs) and lysosomal function, leading to the accumulation of toxic lipid species. This accumulation triggers cellular stress, inflammation, and defective waste processing within cells, disrupting cellular homeostasis and amplifying neuroinflammatory processes. Recent studies have shown that alterations in phospholipid and fatty acid homeostasis drive neuroinflammation and oxidative stress, exacerbating neurodegenerative processes. This review focuses on the role of neuropathy target esterase (PNPLA6/NTE) and NTE-related esterase (PNPLA7/NRE) in lipid metabolism, highlighting how dysregulation of these enzymes contributes to neurodegeneration, inflammation, and lysosomal dysfunction. Additionally, we discuss the involvement of lipid rafts, sphingolipids, and phospholipase enzymes, particularly PLA2 family members, in cellular signaling and membrane dynamics. By examining the relationship between lipid metabolism, inflammatory signaling, and lysosomal storage disorders, we aim to provide a comprehensive understanding of how LDs and lysosomes interact to influence cellular homeostasis in neurodegenerative conditions, which could lead to new therapeutic strategies addressing lipid dysregulation in age-related neurological disorders.</div></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"99 ","pages":"Article 101341"},"PeriodicalIF":14.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782725000232","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related neurodegenerative disorders are often associated with disruptions in lipid metabolism. A critical aspect is the impairment of the interaction between lipid droplets (LDs) and lysosomal function, leading to the accumulation of toxic lipid species. This accumulation triggers cellular stress, inflammation, and defective waste processing within cells, disrupting cellular homeostasis and amplifying neuroinflammatory processes. Recent studies have shown that alterations in phospholipid and fatty acid homeostasis drive neuroinflammation and oxidative stress, exacerbating neurodegenerative processes. This review focuses on the role of neuropathy target esterase (PNPLA6/NTE) and NTE-related esterase (PNPLA7/NRE) in lipid metabolism, highlighting how dysregulation of these enzymes contributes to neurodegeneration, inflammation, and lysosomal dysfunction. Additionally, we discuss the involvement of lipid rafts, sphingolipids, and phospholipase enzymes, particularly PLA2 family members, in cellular signaling and membrane dynamics. By examining the relationship between lipid metabolism, inflammatory signaling, and lysosomal storage disorders, we aim to provide a comprehensive understanding of how LDs and lysosomes interact to influence cellular homeostasis in neurodegenerative conditions, which could lead to new therapeutic strategies addressing lipid dysregulation in age-related neurological disorders.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.