{"title":"Eco-friendly photothermal superhydrophobic coatings: Recently advances in icephobic mechanisms, efficient photothermal conversion, and sustainable anti/de-icing technologies","authors":"Huaqiang Chu, Qian Xu, Zilong Liu, Nian Xu, Hanfang Zhang","doi":"10.1016/j.cis.2025.103565","DOIUrl":null,"url":null,"abstract":"<div><div>Accumulation of snow and ice can pose significant safety hazards and economic losses in many areas of human life and production. Although traditional anti-icing methods have certain de-icing effects, they are mostly affected by the environment and terrain. Superhydrophobic materials originating from nature have attracted much attention for their outstanding passive anti-icing properties and promising application prospects. However, such passive anti-icing materials tend to lose their anti-icing properties after mechanical damage or exposure to harsh conditions. In recent years, more and more studies have shown that it is more practical to combine photothermal conversion properties with superhydrophobic properties. This innovative method integrates the benefits of passive anti-icing materials with active de-icing materials, showcasing exceptional energy-efficient anti/de-icing capabilities. This paper summarizes the advancements in research on photothermal superhydrophobic materials pertaining to anti/de-icing applications. The theory and mechanism of anti-icing are firstly introduced. Secondly, the anti/de-icing performance of photothermal superhydrophobic coatings is evaluated, and the research progress of photothermal superhydrophobic materials in the field of anti/de-icing is summarized, including carbon-based, metallic, semiconducting and polymeric materials. Finally, the challenges and future directions of photothermal superhydrophobic materials in practical engineering applications are discussed.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"343 ","pages":"Article 103565"},"PeriodicalIF":15.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulation of snow and ice can pose significant safety hazards and economic losses in many areas of human life and production. Although traditional anti-icing methods have certain de-icing effects, they are mostly affected by the environment and terrain. Superhydrophobic materials originating from nature have attracted much attention for their outstanding passive anti-icing properties and promising application prospects. However, such passive anti-icing materials tend to lose their anti-icing properties after mechanical damage or exposure to harsh conditions. In recent years, more and more studies have shown that it is more practical to combine photothermal conversion properties with superhydrophobic properties. This innovative method integrates the benefits of passive anti-icing materials with active de-icing materials, showcasing exceptional energy-efficient anti/de-icing capabilities. This paper summarizes the advancements in research on photothermal superhydrophobic materials pertaining to anti/de-icing applications. The theory and mechanism of anti-icing are firstly introduced. Secondly, the anti/de-icing performance of photothermal superhydrophobic coatings is evaluated, and the research progress of photothermal superhydrophobic materials in the field of anti/de-icing is summarized, including carbon-based, metallic, semiconducting and polymeric materials. Finally, the challenges and future directions of photothermal superhydrophobic materials in practical engineering applications are discussed.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.