A new generalization of power Chris-Jerry distribution with different estimation methods, simulation and applications

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Mohammed Elgarhy , Diaa S. Metwally , Amal S. Hassan , Ahmed W. Shawki
{"title":"A new generalization of power Chris-Jerry distribution with different estimation methods, simulation and applications","authors":"Mohammed Elgarhy ,&nbsp;Diaa S. Metwally ,&nbsp;Amal S. Hassan ,&nbsp;Ahmed W. Shawki","doi":"10.1016/j.sciaf.2025.e02769","DOIUrl":null,"url":null,"abstract":"<div><div>The choice of a suitable model has a major impact on the precision and dependability of statistical modeling results. A new model, the transmuted power Chris-Jerry distribution (Tr-PCJD), is presented in this study. The Tr-PCJD is a valuable generalization of the power Chris-Jerry distribution, known for its simplicity and effectiveness in modeling non-negative real-world. Its hazard rate function and density function support a wide variety of designs which reflects this adaptability. Additionally, it includes two existing models as well as a new sub-model. We examine the mathematical characteristics of the Tr-PCJD, such as random number generation, moments, and extropy measures, in order to highlight its significance. Along with that, we investigate eight estimation techniques for estimating the distribution’s unknown parameters. The performance of the Cramer-von Mises, maximum likelihood, right tail Anderson–Darling, least squares, percentiles, Anderson–Darling, weighted least squares, and Anderson–Darling left tail second order estimators is assessed by an extensive simulation study. To further empirically validate the promise of the Tr-PCJD, we apply it to a real-world dataset.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02769"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625002388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The choice of a suitable model has a major impact on the precision and dependability of statistical modeling results. A new model, the transmuted power Chris-Jerry distribution (Tr-PCJD), is presented in this study. The Tr-PCJD is a valuable generalization of the power Chris-Jerry distribution, known for its simplicity and effectiveness in modeling non-negative real-world. Its hazard rate function and density function support a wide variety of designs which reflects this adaptability. Additionally, it includes two existing models as well as a new sub-model. We examine the mathematical characteristics of the Tr-PCJD, such as random number generation, moments, and extropy measures, in order to highlight its significance. Along with that, we investigate eight estimation techniques for estimating the distribution’s unknown parameters. The performance of the Cramer-von Mises, maximum likelihood, right tail Anderson–Darling, least squares, percentiles, Anderson–Darling, weighted least squares, and Anderson–Darling left tail second order estimators is assessed by an extensive simulation study. To further empirically validate the promise of the Tr-PCJD, we apply it to a real-world dataset.
用不同的估计方法对功率克里斯-杰里分布进行了新的推广,并进行了仿真和应用
选择合适的模型对统计建模结果的精度和可靠性有重要影响。本文提出了一种新的变功率克里斯-杰里分布模型(Tr-PCJD)。Tr-PCJD是幂克里斯-杰里分布的一种有价值的推广,以其在非负现实世界建模中的简单性和有效性而闻名。它的危险率函数和密度函数支持各种各样的设计,反映了这种适应性。此外,它还包括两个现有模型和一个新的子模型。我们研究了Tr-PCJD的数学特征,如随机数生成、矩和外倾度量,以突出其重要性。与此同时,我们研究了估计分布的未知参数的八种估计技术。通过广泛的模拟研究评估了克莱默-冯·米塞斯、最大似然、右尾安德森-达林、最小二乘、百分位数、安德森-达林、加权最小二乘和安德森-达林左尾二阶估计的性能。为了进一步验证Tr-PCJD的前景,我们将其应用于现实世界的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信