Well-posedness and strong attractors for a beam model with degenerate nonlocal strong damping

IF 2.4 2区 数学 Q1 MATHEMATICS
Senlin Yan , Chengkui Zhong
{"title":"Well-posedness and strong attractors for a beam model with degenerate nonlocal strong damping","authors":"Senlin Yan ,&nbsp;Chengkui Zhong","doi":"10.1016/j.jde.2025.113495","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to initial-boundary value problem of an extensible beam equation with degenerate nonlocal energy damping in <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>−</mo><mi>κ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>−</mo><mi>γ</mi><msup><mrow><mo>(</mo><msup><mrow><mo>‖</mo><mi>Δ</mi><mi>u</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We prove the global existence, regularity and uniqueness of weak solutions. Moreover, we establish the existence of a strong attractor for the corresponding weak solution semigroup, where the “strong” means that the compactness and attractiveness of the attractor are in the topology of a stronger space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></msub></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113495"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005224","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to initial-boundary value problem of an extensible beam equation with degenerate nonlocal energy damping in ΩRn: uttκΔu+Δ2uγ(Δu2+ut2)qΔut+f(u)=0. We prove the global existence, regularity and uniqueness of weak solutions. Moreover, we establish the existence of a strong attractor for the corresponding weak solution semigroup, where the “strong” means that the compactness and attractiveness of the attractor are in the topology of a stronger space H1q.
简并非局部强阻尼梁模型的适位性和强吸引子
研究了具有退化非局部能量阻尼的可扩展梁方程在Ω∧Rn: ut−κΔu+Δ2u−γ(‖Δu‖2+‖ut‖2)qΔut+f(u)=0的初边值问题。证明了弱解的全局存在性、正则性和唯一性。此外,我们建立了相应弱解半群的强吸引子的存在性,这里的“强”是指吸引子的紧性和吸引性在一个更强空间H1q的拓扑上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信