A mini review on AI-driven thermal treatment of solid Waste: Emission control and process optimization

Dongjie Pang , Cristina Moliner , Tao Wang , Jin Sun , Xinyan Zhang , Yingping Pang , Xiqiang Zhao , Zhanlong Song , Ziliang Wang , Yanpeng Mao , Wenlong Wang
{"title":"A mini review on AI-driven thermal treatment of solid Waste: Emission control and process optimization","authors":"Dongjie Pang ,&nbsp;Cristina Moliner ,&nbsp;Tao Wang ,&nbsp;Jin Sun ,&nbsp;Xinyan Zhang ,&nbsp;Yingping Pang ,&nbsp;Xiqiang Zhao ,&nbsp;Zhanlong Song ,&nbsp;Ziliang Wang ,&nbsp;Yanpeng Mao ,&nbsp;Wenlong Wang","doi":"10.1016/j.gerr.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of novel waste disposal methodologies, which are energy-efficient and environmentally benign, has created opportunities for the deployment of artificial intelligence technologies in the management of solid waste treatment. This review examines the deployment of AI-optimized control algorithms in processes including pyrolysis, incineration, and gasification. The application of machine learning models, including linear regression (LR), genetic algorithm (GA), support vector machine (SVM), artificial neural networks (ANN), decision trees (DT), and Extreme Gradient Boosting (XGBoost), enables real-time monitoring of performance and dynamic adjustment of parameters to enhance energy recovery and minimize pollution. The implementation of AI-based solutions enables the optimization of key characteristics, such as temperature and oxygen levels, with the objective of achieving optimal energy efficiency while minimizing the emission of harmful substances, including CO, NOx, and dioxins. Notwithstanding these advancements, challenges remain in hyperparameter tuning, probabilistic assessments, and feature generation. A comprehensive understanding of future technologies will necessitate a synthesis of knowledge and data-oriented approaches, the design of autonomous control systems, and the integration of digital twin technologies to bridge the gap between theory and practice.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"3 2","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720525000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of novel waste disposal methodologies, which are energy-efficient and environmentally benign, has created opportunities for the deployment of artificial intelligence technologies in the management of solid waste treatment. This review examines the deployment of AI-optimized control algorithms in processes including pyrolysis, incineration, and gasification. The application of machine learning models, including linear regression (LR), genetic algorithm (GA), support vector machine (SVM), artificial neural networks (ANN), decision trees (DT), and Extreme Gradient Boosting (XGBoost), enables real-time monitoring of performance and dynamic adjustment of parameters to enhance energy recovery and minimize pollution. The implementation of AI-based solutions enables the optimization of key characteristics, such as temperature and oxygen levels, with the objective of achieving optimal energy efficiency while minimizing the emission of harmful substances, including CO, NOx, and dioxins. Notwithstanding these advancements, challenges remain in hyperparameter tuning, probabilistic assessments, and feature generation. A comprehensive understanding of future technologies will necessitate a synthesis of knowledge and data-oriented approaches, the design of autonomous control systems, and the integration of digital twin technologies to bridge the gap between theory and practice.

Abstract Image

人工智能驱动固体废物热处理技术综述:排放控制与工艺优化
节能环保的新型废物处理方法的出现,为在固体废物处理管理中部署人工智能技术创造了机会。本文综述了人工智能优化控制算法在热解、焚烧和气化等过程中的应用。机器学习模型的应用,包括线性回归(LR)、遗传算法(GA)、支持向量机(SVM)、人工神经网络(ANN)、决策树(DT)和极端梯度增强(XGBoost),能够实时监测性能和动态调整参数,以提高能量回收和减少污染。基于人工智能的解决方案能够优化关键特性,如温度和氧气水平,以实现最佳的能源效率,同时最大限度地减少有害物质的排放,包括CO, NOx和二恶英。尽管取得了这些进步,但在超参数调优、概率评估和特征生成方面仍然存在挑战。对未来技术的全面理解将需要综合知识和面向数据的方法,自主控制系统的设计以及数字孪生技术的集成,以弥合理论与实践之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信