Wenyi Zhao, Ying Chen, Lei Yang, Chunyong Liang*, Donghui Wang* and Hongshui Wang*,
{"title":"Femtosecond Laser Treatment of Ti Surfaces: Antibacterial Mechanisms and Deep Learning-Based Surface Recognition","authors":"Wenyi Zhao, Ying Chen, Lei Yang, Chunyong Liang*, Donghui Wang* and Hongshui Wang*, ","doi":"10.1021/acsbiomaterials.5c0015510.1021/acsbiomaterials.5c00155","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infections have been demonstrated to cause the premature failure of implants. A reliable strategy for preserving biocompatibility is to physically modify the implant surface, without using chemicals, to prevent bacterial adhesion. This study employed femtosecond laser processing to generate various laser-induced periodic surface structures on Ti substrates. The antibacterial properties and osteoblast adhesion characteristics of these surfaces were investigated. Gene expression profiles and transcriptomic data were compared before and after laser treatment, and high-throughput analysis was conducted to evaluate the antibacterial performance related to different surface modifications. A small data set of Ti surface scanning electron microscopy images was compiled, and a deep learning model was trained using transfer learning to facilitate surface recognition and classification. The results demonstrated that femtosecond laser treatment disrupted bacterial adhesion and the expression of adhesion-related genes on the Ti surface, with the laser-treated samples at 5.6 W and 500 mm/s exhibiting an antibacterial efficacy exceeding 60%. In addition, the optimized deep learning model, ResNet50-TL, accurately identified and classified the structures of Ti surfaces post-treatment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3364–3375 3364–3375"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections have been demonstrated to cause the premature failure of implants. A reliable strategy for preserving biocompatibility is to physically modify the implant surface, without using chemicals, to prevent bacterial adhesion. This study employed femtosecond laser processing to generate various laser-induced periodic surface structures on Ti substrates. The antibacterial properties and osteoblast adhesion characteristics of these surfaces were investigated. Gene expression profiles and transcriptomic data were compared before and after laser treatment, and high-throughput analysis was conducted to evaluate the antibacterial performance related to different surface modifications. A small data set of Ti surface scanning electron microscopy images was compiled, and a deep learning model was trained using transfer learning to facilitate surface recognition and classification. The results demonstrated that femtosecond laser treatment disrupted bacterial adhesion and the expression of adhesion-related genes on the Ti surface, with the laser-treated samples at 5.6 W and 500 mm/s exhibiting an antibacterial efficacy exceeding 60%. In addition, the optimized deep learning model, ResNet50-TL, accurately identified and classified the structures of Ti surfaces post-treatment.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture