Shanmugapriya B, Shailajha S* and Sakthi @ Muthulakshmi S,
{"title":"Dual-Phase Degradation and Hydroxyapatite Formation in Bioactive Glass Ceramic-Coated Aluminum Titanate Scaffolds for Bone Applications","authors":"Shanmugapriya B, Shailajha S* and Sakthi @ Muthulakshmi S, ","doi":"10.1021/acsbiomaterials.5c0004810.1021/acsbiomaterials.5c00048","DOIUrl":null,"url":null,"abstract":"<p >Aluminum titanium oxide scaffolds present a highly promising option because of their bioactivity, degradability, and antibacterial characteristics for bone tissue engineering. This makes them a viable alternative to metallic implants, which are susceptible to infection and have limited endurance. The present work aims to examine the impact of sol–gel bioactive glass ceramic coatings on Al<sub>2</sub>TiO<sub>5</sub> pellets throughout immersion periods of 12 and 24 h (BG12, BG24). A dual-phase degradation process occurs in these coated scaffolds: first, ion release from the coating stimulates the creation of hydroxyapatite, followed by a progressive breakdown of the Al<sub>2</sub>TiO<sub>5</sub> substrate, which further facilitates bone regeneration. An analysis of the structural and mechanical characteristics of coated and uncoated pellets was conducted by utilizing FESEM-EDS, XRD, TG-DTA, FTIR, BET, AFM, and micro-UTM techniques. Findings indicated that the scaffolds consist of a crystalline component of calcium magnesium silicate and calcium sodium aluminum silicate, together with a porous surface. Among the scaffolds, BG24 had the greatest compressive strength of 101 MPa. Bioactivity investigations demonstrated the production of hydroxyapatite in SBF, with a calcium-to-phosphorus ratio of 1.68 attained by BG24 after 14 days. Moreover, BG24 showed 90% cell survival at 100 μg mL<sup>–1</sup>, so verifying its cytocompatibility based on biocompatibility and antibacterial tests. Antibacterial research also showed that it effectively stopped the growth of <i>S. aureus</i> and <i>E. coli</i> bacteria, which supports the idea that it might be able to lower the risk of infections in biomedical settings. Because of its improved bioactivity through a dual-phase degradation mechanism, BG24 is a promising option for bone tissue regeneration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3330–3350 3330–3350"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00048","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum titanium oxide scaffolds present a highly promising option because of their bioactivity, degradability, and antibacterial characteristics for bone tissue engineering. This makes them a viable alternative to metallic implants, which are susceptible to infection and have limited endurance. The present work aims to examine the impact of sol–gel bioactive glass ceramic coatings on Al2TiO5 pellets throughout immersion periods of 12 and 24 h (BG12, BG24). A dual-phase degradation process occurs in these coated scaffolds: first, ion release from the coating stimulates the creation of hydroxyapatite, followed by a progressive breakdown of the Al2TiO5 substrate, which further facilitates bone regeneration. An analysis of the structural and mechanical characteristics of coated and uncoated pellets was conducted by utilizing FESEM-EDS, XRD, TG-DTA, FTIR, BET, AFM, and micro-UTM techniques. Findings indicated that the scaffolds consist of a crystalline component of calcium magnesium silicate and calcium sodium aluminum silicate, together with a porous surface. Among the scaffolds, BG24 had the greatest compressive strength of 101 MPa. Bioactivity investigations demonstrated the production of hydroxyapatite in SBF, with a calcium-to-phosphorus ratio of 1.68 attained by BG24 after 14 days. Moreover, BG24 showed 90% cell survival at 100 μg mL–1, so verifying its cytocompatibility based on biocompatibility and antibacterial tests. Antibacterial research also showed that it effectively stopped the growth of S. aureus and E. coli bacteria, which supports the idea that it might be able to lower the risk of infections in biomedical settings. Because of its improved bioactivity through a dual-phase degradation mechanism, BG24 is a promising option for bone tissue regeneration.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture