Electric Stimulation Combined with Biomaterials for Repairing Spinal Cord Injury

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lulu Du, Liya Zhang, Shengzhe Bao, Fangsu Yan, Wenwei Jiang, Hui Wang* and Chuanming Dong*, 
{"title":"Electric Stimulation Combined with Biomaterials for Repairing Spinal Cord Injury","authors":"Lulu Du,&nbsp;Liya Zhang,&nbsp;Shengzhe Bao,&nbsp;Fangsu Yan,&nbsp;Wenwei Jiang,&nbsp;Hui Wang* and Chuanming Dong*,&nbsp;","doi":"10.1021/acsbiomaterials.5c0061510.1021/acsbiomaterials.5c00615","DOIUrl":null,"url":null,"abstract":"<p >Spinal cord injury (SCI) is a central nervous system (CNS) disease with a high disability rate, and reconstructing motor function after SCI remains a global challenge. Recent advancements in rehabilitation and regenerative medicine offer new approaches to SCI repair. Electrical stimulation has been shown to alter cell membrane charge distribution, generating action potentials, and affecting cell behavior. This method aids axon regeneration and neurotrophic factor upregulation, crucial for nerve repair. Biomaterials, used as scaffolds or coatings in cell culture and tissue engineering, enhance cell proliferation, migration, differentiation, and tissue regeneration. Electroactive biomaterials combined with electrical stimulation show promise in regenerating nerve, heart, and bone tissues. In this paper, different types of electrical stimulation and biomaterials applied to SCI are described, and the current application and research progress of electrical stimulation combined with biomaterials in the treatment of SCI are described, as well as the future prospects and challenges.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 6","pages":"3276–3296 3276–3296"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.5c00615","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a central nervous system (CNS) disease with a high disability rate, and reconstructing motor function after SCI remains a global challenge. Recent advancements in rehabilitation and regenerative medicine offer new approaches to SCI repair. Electrical stimulation has been shown to alter cell membrane charge distribution, generating action potentials, and affecting cell behavior. This method aids axon regeneration and neurotrophic factor upregulation, crucial for nerve repair. Biomaterials, used as scaffolds or coatings in cell culture and tissue engineering, enhance cell proliferation, migration, differentiation, and tissue regeneration. Electroactive biomaterials combined with electrical stimulation show promise in regenerating nerve, heart, and bone tissues. In this paper, different types of electrical stimulation and biomaterials applied to SCI are described, and the current application and research progress of electrical stimulation combined with biomaterials in the treatment of SCI are described, as well as the future prospects and challenges.

电刺激联合生物材料修复脊髓损伤
脊髓损伤(SCI)是一种致残率高的中枢神经系统疾病,脊髓损伤后的运动功能重建一直是一个全球性的挑战。康复和再生医学的最新进展为脊髓损伤修复提供了新的途径。电刺激可以改变细胞膜电荷分布,产生动作电位,影响细胞行为。这种方法有助于轴突再生和神经营养因子上调,这对神经修复至关重要。生物材料在细胞培养和组织工程中用作支架或涂层,可增强细胞增殖、迁移、分化和组织再生。结合电刺激的电活性生物材料在再生神经、心脏和骨组织方面显示出希望。本文介绍了不同类型的电刺激和生物材料在脊髓损伤中的应用,并介绍了电刺激联合生物材料在脊髓损伤治疗中的应用现状和研究进展,以及未来的前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信