Thermotropic liquid crystal-driven interfacial fusion of high-aspect-ratio polyarylate nanofibers for ultrastable honeycomb with closed-loop recyclability

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jingxian Wang, Hua Ma, Bo Yuan, Shiwen Yang, Qingquan Tang, Yuping Chen, Yuxuan Zhu, Hua Wang, Luoxin Wang, Siwei Xiong
{"title":"Thermotropic liquid crystal-driven interfacial fusion of high-aspect-ratio polyarylate nanofibers for ultrastable honeycomb with closed-loop recyclability","authors":"Jingxian Wang,&nbsp;Hua Ma,&nbsp;Bo Yuan,&nbsp;Shiwen Yang,&nbsp;Qingquan Tang,&nbsp;Yuping Chen,&nbsp;Yuxuan Zhu,&nbsp;Hua Wang,&nbsp;Luoxin Wang,&nbsp;Siwei Xiong","doi":"10.1016/j.cej.2025.164614","DOIUrl":null,"url":null,"abstract":"<div><div>To address process and interface limitations in aramid honeycomb for aerospace and rail transportation, this work develops polyarylate (PAR) nanofibers with high aspect ratios using melt spinning coupled with wet dissociation, exploiting the liquid crystalline behavior of PAR to enhance molecular alignment and mechanical integrity. A scalable template thermal welding process was used to enable directional assembly and strengthen interfacial fusion in PAR nanofiber honeycomb (PAR NFHC), effectively mitigating stress concentration and delamination failures caused by fiber/resin interface mismatch in conventional aramid honeycombs. PAR NFHC demonstrates exceptional mechanical properties, with compressive strength, specific strength, and Young's modulus reaching 161 MPa, 290 kN·m·kg<sup>−1</sup>, and 977 MPa, respectively-up to 40 times higher than commercial HC. Even after prolonged exposure to high temperatures (200 °C for 24 h) and ultraviolet radiation (24 h), PAR NFHC retains compressive strengths of 151.8 MPa and 146 MPa, respectively, with minimal degradation, whereas commercial HC experiences a substantial reduction to 1.8 MPa and 1.9 MPa. PAR NFHC exhibits excellent flexibility, enduring single-point bending at 45° and double-point bending at 30° without failure. The thermoplasticity of PAR NFHC enables closed-loop recycling, minimizing resource consumption while maintaining performance. This property positions PAR NFHC as a promising candidate for the sustainable development of high-performance honeycomb materials.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"518 ","pages":"Article 164614"},"PeriodicalIF":13.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725054506","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address process and interface limitations in aramid honeycomb for aerospace and rail transportation, this work develops polyarylate (PAR) nanofibers with high aspect ratios using melt spinning coupled with wet dissociation, exploiting the liquid crystalline behavior of PAR to enhance molecular alignment and mechanical integrity. A scalable template thermal welding process was used to enable directional assembly and strengthen interfacial fusion in PAR nanofiber honeycomb (PAR NFHC), effectively mitigating stress concentration and delamination failures caused by fiber/resin interface mismatch in conventional aramid honeycombs. PAR NFHC demonstrates exceptional mechanical properties, with compressive strength, specific strength, and Young's modulus reaching 161 MPa, 290 kN·m·kg−1, and 977 MPa, respectively-up to 40 times higher than commercial HC. Even after prolonged exposure to high temperatures (200 °C for 24 h) and ultraviolet radiation (24 h), PAR NFHC retains compressive strengths of 151.8 MPa and 146 MPa, respectively, with minimal degradation, whereas commercial HC experiences a substantial reduction to 1.8 MPa and 1.9 MPa. PAR NFHC exhibits excellent flexibility, enduring single-point bending at 45° and double-point bending at 30° without failure. The thermoplasticity of PAR NFHC enables closed-loop recycling, minimizing resource consumption while maintaining performance. This property positions PAR NFHC as a promising candidate for the sustainable development of high-performance honeycomb materials.
热致液晶驱动高纵横比聚芳酯纳米纤维界面融合的超稳定闭环可回收蜂窝
为了解决用于航空航天和铁路运输的芳纶蜂窝的工艺和界面限制,本研究利用熔融纺丝和湿解耦开发了具有高纵横比的聚芳酯(PAR)纳米纤维,利用PAR的液晶行为来增强分子排列和机械完整性。采用可扩展模板热焊接工艺,实现了PAR纳米纤维蜂窝(PAR NFHC)的定向组装和界面融合,有效缓解了传统芳纶蜂窝中纤维/树脂界面失配引起的应力集中和分层失效。PAR NFHC表现出优异的力学性能,抗压强度、比强度和杨氏模量分别达到161 MPa、290 kN·m·kg−1和977 MPa,是商用HC的40倍。即使长时间暴露在高温(200 °C, 24 h)和紫外线辐射(24 h)下,PAR NFHC的抗压强度也分别保持在151.8 MPa和146 MPa,降解程度最低,而商用HC的抗压强度则大幅降低至1.8 MPa和1.9 MPa。PAR NFHC具有优异的柔韧性,可承受45°单点弯曲和30°双点弯曲而不会失效。PAR NFHC的热塑性可实现闭环回收,在保持性能的同时最大限度地减少资源消耗。这一特性使PAR NFHC成为高性能蜂窝材料可持续发展的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信