En-Min Shih, Qianhui Shi, Daniel Rhodes, Bumho Kim, Kenji Watanabe, Takashi Taniguchi, Kun Yang, James Hone, Cory R. Dean
{"title":"Spin-selective magneto-conductivity in WSe2","authors":"En-Min Shih, Qianhui Shi, Daniel Rhodes, Bumho Kim, Kenji Watanabe, Takashi Taniguchi, Kun Yang, James Hone, Cory R. Dean","doi":"10.1038/s41567-025-02918-5","DOIUrl":null,"url":null,"abstract":"<p>Material systems that exhibit tunable spin-selective conductivity are key components of spintronic technologies. Here, we demonstrate a mechanism for spin-selective transport that is based on the unusual Landau-level sequence observed in bilayer WSe<sub>2</sub> under large applied magnetic fields. We find that the conductivity depends strongly on the relative ordering between conducting electrons with different spins and valleys in a partially filled Landau level and the localized electrons of lower-energy filled Landau levels. We observe that the conductivity is almost completely suppressed when the spin ratio and field-tuned Coulomb energy exceed a critical threshold. We achieve switching between on and off states through either modulation of the external magnetic or electric fields, with many-body interactions driving a collective switching mechanism. In contrast to magnetoresistive heterostructures, this mechanism achieves electrically tunable spin filtering within a single material, driven by the interaction between free and localized spins residing in energy-separated spin-and-valley-polarized bands. Similar spin-selective conductivity may be realizable in flat-band systems at zero magnetic field.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"17 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02918-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Material systems that exhibit tunable spin-selective conductivity are key components of spintronic technologies. Here, we demonstrate a mechanism for spin-selective transport that is based on the unusual Landau-level sequence observed in bilayer WSe2 under large applied magnetic fields. We find that the conductivity depends strongly on the relative ordering between conducting electrons with different spins and valleys in a partially filled Landau level and the localized electrons of lower-energy filled Landau levels. We observe that the conductivity is almost completely suppressed when the spin ratio and field-tuned Coulomb energy exceed a critical threshold. We achieve switching between on and off states through either modulation of the external magnetic or electric fields, with many-body interactions driving a collective switching mechanism. In contrast to magnetoresistive heterostructures, this mechanism achieves electrically tunable spin filtering within a single material, driven by the interaction between free and localized spins residing in energy-separated spin-and-valley-polarized bands. Similar spin-selective conductivity may be realizable in flat-band systems at zero magnetic field.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.