Interfacial Alloying-Induced Optimization of Zn2+ Diffusion and Atomic Migration for Stable Aqueous Zn Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qi Li, Chun Fang, Chunze Yan
{"title":"Interfacial Alloying-Induced Optimization of Zn2+ Diffusion and Atomic Migration for Stable Aqueous Zn Batteries","authors":"Qi Li, Chun Fang, Chunze Yan","doi":"10.1002/adfm.202509192","DOIUrl":null,"url":null,"abstract":"Dendrite formation and corrosion issues of zinc anode hinder the practical application of aqueous rechargeable zinc-ion batteries (AZIBs). Controlling the interfacial morphology during electrochemical process is critical for mitigating dendrite growth and corrosion issues in zinc electrodeposition. Herein, taking gallium (Ga) and indium (In) as the model system, three types of alloy-coated zinc anodes, namely GaInZn-coated Zn (GIZ), InZn-coated Zn (IZ), and GaZn-coated Zn (GZ) are designed. This work systematically investigates the morphology evolution and corrosion behavior of pure Zn and coated Zn anodes during the electrodeposition process, aiming to reveal the correlation between electrochemical behavior and deposition substrates. The design of alloy-coated Zn anode provides novel insights into zinc-ion diffusion in the electrolyte, nucleation on the alloy surfaces, and atomic diffusion behavior within the alloy phase. Specifically, the GIZ alloy phase regulates the migration of zinc ions, promotes zincophilic ion deposition, and suppresses anode corrosion tendency. Owing to preferential nucleation and enhanced corrosion resistance, the modified symmetric cell demonstrates stable operation for over 3000 h (&gt;4 months) at 1 mA cm<sup>−2</sup> with a capacity of 1 mAh cm<sup>−2</sup>.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509192","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dendrite formation and corrosion issues of zinc anode hinder the practical application of aqueous rechargeable zinc-ion batteries (AZIBs). Controlling the interfacial morphology during electrochemical process is critical for mitigating dendrite growth and corrosion issues in zinc electrodeposition. Herein, taking gallium (Ga) and indium (In) as the model system, three types of alloy-coated zinc anodes, namely GaInZn-coated Zn (GIZ), InZn-coated Zn (IZ), and GaZn-coated Zn (GZ) are designed. This work systematically investigates the morphology evolution and corrosion behavior of pure Zn and coated Zn anodes during the electrodeposition process, aiming to reveal the correlation between electrochemical behavior and deposition substrates. The design of alloy-coated Zn anode provides novel insights into zinc-ion diffusion in the electrolyte, nucleation on the alloy surfaces, and atomic diffusion behavior within the alloy phase. Specifically, the GIZ alloy phase regulates the migration of zinc ions, promotes zincophilic ion deposition, and suppresses anode corrosion tendency. Owing to preferential nucleation and enhanced corrosion resistance, the modified symmetric cell demonstrates stable operation for over 3000 h (>4 months) at 1 mA cm−2 with a capacity of 1 mAh cm−2.

Abstract Image

界面合金化诱导Zn2+扩散和原子迁移的优化研究
锌阳极的枝晶形成和腐蚀问题阻碍了锌离子电池的实际应用。控制电化学过程中的界面形态是缓解锌电沉积过程中枝晶生长和腐蚀问题的关键。本文以镓(Ga)和铟(In)为模型体系,设计了GaInZn-coated Zn (GIZ)、InZn-coated Zn (IZ)和GaZn-coated Zn (GZ)三种类型的合金包覆锌阳极。本文系统地研究了纯锌和镀锌阳极在电沉积过程中的形貌演变和腐蚀行为,旨在揭示电化学行为与沉积衬底之间的关系。合金涂层锌阳极的设计为锌离子在电解液中的扩散、合金表面的成核以及合金相中的原子扩散行为提供了新的见解。具体来说,GIZ合金相调节锌离子的迁移,促进亲锌离子沉积,抑制阳极腐蚀倾向。由于优先成核和增强的耐腐蚀性,改进的对称电池在1ma cm - 2下稳定运行超过3000小时(>;4个月),容量为1mah cm - 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信