Starting the Engine and Releasing the Brakes of T-Cell Responses: A Biomimetic Dendritic Cell Nanoplatform for Improved Glioblastoma Immunotherapy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-07 DOI:10.1021/acsnano.4c18904
Lei Kuang, Mengwei Han, Xinxia Wu, Zhiqin Deng, Taiyang Liu, Ying Yin, Yuanyang Tang, Zhufeng Dong, Xiaoye Hu, Siqing Zhu, Zheng Wang, Tieying Yin, Yazhou Wang
{"title":"Starting the Engine and Releasing the Brakes of T-Cell Responses: A Biomimetic Dendritic Cell Nanoplatform for Improved Glioblastoma Immunotherapy","authors":"Lei Kuang, Mengwei Han, Xinxia Wu, Zhiqin Deng, Taiyang Liu, Ying Yin, Yuanyang Tang, Zhufeng Dong, Xiaoye Hu, Siqing Zhu, Zheng Wang, Tieying Yin, Yazhou Wang","doi":"10.1021/acsnano.4c18904","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM), the most aggressive primary brain tumor, remains a challenge for immunotherapies, like immune checkpoint blockade (ICB), due to the blood–brain barrier (BBB) and immunosuppressive tumor microenvironment (TME) deficient in cytotoxic T-cells and effective T-cell-dendritic cell (DC) interactions. Herein, we engineer a biomimetic nanoplatform comprising paclitaxel (PTX) nanoparticles (NPs) encapsulated in a tumor-associated antigen-loaded DC membrane modified with ICB antibodies. The DC membrane not only facilitates BBB penetration and GBM targeting but also directly engages with T-cells reminiscent of T-cell-antigen-presenting cell (APC) clusters. Simultaneously, PTX NPs induce immunogenic cell death, eliciting persistent stimulatory signals for DC maturation and subsequent T-cell priming, thus synergistically “starting the engine” of T-cell immune responses. Meanwhile, ICB antibodies further “release the brakes” by mitigating T-cell exhaustion and dysfunction. In GBM-bearing mice, this nanoplatform outperformed ICB monotherapy, significantly inhibiting tumor growth and prolonging survival by reshaping the TME. We observed increased number of cytotoxic T-cells proximal to DCs that form T-cell-APC clusters, accompanied by enhanced T-cell proliferation and effector function. This study provides a promising paradigm for overcoming immunotherapy resistance in GBM.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"40 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM), the most aggressive primary brain tumor, remains a challenge for immunotherapies, like immune checkpoint blockade (ICB), due to the blood–brain barrier (BBB) and immunosuppressive tumor microenvironment (TME) deficient in cytotoxic T-cells and effective T-cell-dendritic cell (DC) interactions. Herein, we engineer a biomimetic nanoplatform comprising paclitaxel (PTX) nanoparticles (NPs) encapsulated in a tumor-associated antigen-loaded DC membrane modified with ICB antibodies. The DC membrane not only facilitates BBB penetration and GBM targeting but also directly engages with T-cells reminiscent of T-cell-antigen-presenting cell (APC) clusters. Simultaneously, PTX NPs induce immunogenic cell death, eliciting persistent stimulatory signals for DC maturation and subsequent T-cell priming, thus synergistically “starting the engine” of T-cell immune responses. Meanwhile, ICB antibodies further “release the brakes” by mitigating T-cell exhaustion and dysfunction. In GBM-bearing mice, this nanoplatform outperformed ICB monotherapy, significantly inhibiting tumor growth and prolonging survival by reshaping the TME. We observed increased number of cytotoxic T-cells proximal to DCs that form T-cell-APC clusters, accompanied by enhanced T-cell proliferation and effector function. This study provides a promising paradigm for overcoming immunotherapy resistance in GBM.

Abstract Image

启动引擎和释放刹车的t细胞反应:改进胶质母细胞瘤免疫治疗的仿生树突状细胞纳米平台
胶质母细胞瘤(GBM)是最具侵袭性的原发性脑肿瘤,由于血脑屏障(BBB)和免疫抑制肿瘤微环境(TME)缺乏细胞毒性t细胞和有效的t -树突状细胞(DC)相互作用,对免疫疗法(如免疫检查点阻断(ICB))仍然是一个挑战。在此,我们设计了一个仿生纳米平台,包括紫杉醇(PTX)纳米颗粒(NPs)包裹在一个肿瘤相关抗原负载的DC膜上,该膜被ICB抗体修饰。DC膜不仅促进血脑屏障的穿透和GBM靶向,而且还直接与t细胞结合,使人联想到t细胞抗原呈递细胞(APC)集群。同时,PTX NPs诱导免疫原性细胞死亡,引发DC成熟和随后的t细胞启动的持续刺激信号,从而协同“启动”t细胞免疫反应的引擎。同时,ICB抗体通过减轻t细胞衰竭和功能障碍进一步“释放刹车”。在携带gbm的小鼠中,该纳米平台优于ICB单药治疗,通过重塑TME显着抑制肿瘤生长并延长生存期。我们观察到dc附近形成t细胞- apc簇的细胞毒性t细胞数量增加,同时t细胞增殖和效应细胞功能增强。这项研究为克服GBM的免疫治疗耐药提供了一个有希望的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信