{"title":"Promise and Perspectives of Garnet-Based Anode-Free Solid-State Batteries","authors":"Jiayun Wen, Yiming Dai, Qian Yu, Zhiyuan Ouyang, Wei Luo, Yunhui Huang","doi":"10.1021/accountsmr.4c00129","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of energy storage technologies, lithium-ion batteries (LIBs) based on graphite anodes and liquid organic electrolytes have achieved remarkable progress. Nevertheless, the limited specific capacity of graphite anodes and the safety concerns associated with organic electrolytes hinder further enhancement of LIBs. In pursuit of higher energy density and improved safety, solid-state Li metal batteries (SSLMBs) have drawn significant attention. Furthermore, anode-free solid-state batteries (AFSSBs), as a particularly promising innovation in the field of energy storage, have gained increasing interest in recent years. With increasing research investment and continuous technological optimization, AFSSBs hold great potential for widespread applications including electric vehicles, grid energy storage, and beyond.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"08 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of energy storage technologies, lithium-ion batteries (LIBs) based on graphite anodes and liquid organic electrolytes have achieved remarkable progress. Nevertheless, the limited specific capacity of graphite anodes and the safety concerns associated with organic electrolytes hinder further enhancement of LIBs. In pursuit of higher energy density and improved safety, solid-state Li metal batteries (SSLMBs) have drawn significant attention. Furthermore, anode-free solid-state batteries (AFSSBs), as a particularly promising innovation in the field of energy storage, have gained increasing interest in recent years. With increasing research investment and continuous technological optimization, AFSSBs hold great potential for widespread applications including electric vehicles, grid energy storage, and beyond.