The linker protein ApcI regulates light harvesting under red light in Synechocystis sp. PCC 6803

Roberto Espinoza-Corral, Tomáš Zavřel, Markus Sutter, Chase H Leslie, Kunwei Yang, Warren F Beck, Jan Červený, Cheryl A Kerfeld
{"title":"The linker protein ApcI regulates light harvesting under red light in Synechocystis sp. PCC 6803","authors":"Roberto Espinoza-Corral, Tomáš Zavřel, Markus Sutter, Chase H Leslie, Kunwei Yang, Warren F Beck, Jan Červený, Cheryl A Kerfeld","doi":"10.1093/plcell/koaf144","DOIUrl":null,"url":null,"abstract":"Phycobilisomes are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. They can adapt to various light conditions; for example, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences phycobilisome structure and function, as observed under far-red light exposure. Here, we describe a phycobilisome linker protein, ApcI (previously hypothetical protein Sll1911), expressed specifically under red light (620 nm) or upon chemically induced reduction of the plastoquinone pool. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant analyses, phycobilisome binding experiments, and protein interaction studies. Deletion of apcI conferred high light tolerance on Synechocystis sp. PCC 6803 compared to the wild-type strain, leading to reduced energy transfer from phycobilisomes to the photosystems under high light. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the phycobilisome core via a paralogous C-terminal motif. Additionally, the N-terminal region of ApcI interacts with photosystem II. Our findings highlight the importance of phycobilisome remodeling for adaptation to different light conditions. The characterization of ApcI provides insight into the mechanisms by which cyanobacteria optimize light harvesting in response to varying light conditions.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phycobilisomes are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. They can adapt to various light conditions; for example, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences phycobilisome structure and function, as observed under far-red light exposure. Here, we describe a phycobilisome linker protein, ApcI (previously hypothetical protein Sll1911), expressed specifically under red light (620 nm) or upon chemically induced reduction of the plastoquinone pool. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant analyses, phycobilisome binding experiments, and protein interaction studies. Deletion of apcI conferred high light tolerance on Synechocystis sp. PCC 6803 compared to the wild-type strain, leading to reduced energy transfer from phycobilisomes to the photosystems under high light. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the phycobilisome core via a paralogous C-terminal motif. Additionally, the N-terminal region of ApcI interacts with photosystem II. Our findings highlight the importance of phycobilisome remodeling for adaptation to different light conditions. The characterization of ApcI provides insight into the mechanisms by which cyanobacteria optimize light harvesting in response to varying light conditions.
连接蛋白ApcI调控Synechocystis sp. PCC 6803在红光下的光收获
藻胆体是多用途的蓝藻天线复合体,可以收集光能来驱动光合作用。能适应各种光照条件;例如,在强光下拆除以防止光氧化,在弱光下排列以提高光收集效率。在远红光照射下观察到,光质量也会影响藻胆体的结构和功能。在这里,我们描述了一种藻胆体连接蛋白ApcI(先前假设的蛋白Sll1911),它在红光(620 nm)或化学诱导的质体醌池还原下特异性表达。我们通过突变体分析、藻胆酶体结合实验和蛋白质相互作用研究,对藻胆酶体PCC 6803的ApcI进行了表征。与野生型菌株相比,apcI的缺失使聚囊藻PCC 6803具有更高的耐光性,导致在强光下藻胆体向光系统的能量转移减少。结合实验表明,ApcI通过一个同源的c端基序取代了藻胆小体核心面向膜侧的连接蛋白ApcG。此外,ApcI的n端区域与光系统II相互作用。我们的发现强调了藻胆体重塑对适应不同光照条件的重要性。ApcI的表征提供了深入了解蓝藻在不同光照条件下优化光收获的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信