Hui Zheng, Salvador Torres-Montilla, Xingqi Huang, Manuel Rodríguez-Concepción, Shan Lu
{"title":"STAY-GREEN overexpression in dark-incubated leaves promotes the formation of transitional chromoplast-like plastids","authors":"Hui Zheng, Salvador Torres-Montilla, Xingqi Huang, Manuel Rodríguez-Concepción, Shan Lu","doi":"10.1093/plphys/kiaf242","DOIUrl":null,"url":null,"abstract":"The transition of chloroplasts into chromoplasts and gerontoplasts during fruit ripening and leaf senescence, respectively, involves chlorophyll breakdown and chloroplast deterioration. Chlorophyll removal is carried out by several enzymes. Among them, the Mg-dechelatase STAY-GREEN (SGR) catalyzes the first step of chlorophyll degradation. The tomato green-flesh (gf) and pepper chlorophyll retainer (cl) mutants are SGR loss-of-function mutants that maintain high levels of thylakoid structures during chromoplast development in ripening fruits. Here, by overexpressing SGR in non-illuminated Nicotiana benthamiana leaves, we demonstrated that SGR triggers the onset of chloroplast deterioration, resulting in the formation of orange leaf sectors containing plastids with carotenoid-bearing structures, although carotenoid production is not induced. Metabolite, microscopy, and transcriptome analyses suggested the onset of chloroplast senescence, indicating a possible transitional plastid stage in SGR-overexpressing regions. Overall, our work demonstrates the remarkable ability of plant plastids to adapt their ultrastructure to accommodate the precise metabolic composition of various developmental and environmental contexts.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"34 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf242","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The transition of chloroplasts into chromoplasts and gerontoplasts during fruit ripening and leaf senescence, respectively, involves chlorophyll breakdown and chloroplast deterioration. Chlorophyll removal is carried out by several enzymes. Among them, the Mg-dechelatase STAY-GREEN (SGR) catalyzes the first step of chlorophyll degradation. The tomato green-flesh (gf) and pepper chlorophyll retainer (cl) mutants are SGR loss-of-function mutants that maintain high levels of thylakoid structures during chromoplast development in ripening fruits. Here, by overexpressing SGR in non-illuminated Nicotiana benthamiana leaves, we demonstrated that SGR triggers the onset of chloroplast deterioration, resulting in the formation of orange leaf sectors containing plastids with carotenoid-bearing structures, although carotenoid production is not induced. Metabolite, microscopy, and transcriptome analyses suggested the onset of chloroplast senescence, indicating a possible transitional plastid stage in SGR-overexpressing regions. Overall, our work demonstrates the remarkable ability of plant plastids to adapt their ultrastructure to accommodate the precise metabolic composition of various developmental and environmental contexts.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.