James N. Bull, Arun Subramani, Chang Liu, Samuel J. P. Marlton, Eleanor K. Ashworth, Henrik Cederquist, Henning Zettergren, Mark H. Stockett
{"title":"Radiative Stabilization of the Indenyl Cation: Recurrent Fluorescence in a Closed-Shell Polycyclic Aromatic Hydrocarbon","authors":"James N. Bull, Arun Subramani, Chang Liu, Samuel J. P. Marlton, Eleanor K. Ashworth, Henrik Cederquist, Henning Zettergren, Mark H. Stockett","doi":"10.1103/physrevlett.134.228002","DOIUrl":null,"url":null,"abstract":"Several small polycyclic aromatic hydrocarbons (PAHs) with closed-shell electronic structure have been identified in the cold, dark environment Taurus Molecular Cloud 1. We measure efficient radiative cooling through the combination of recurrent fluorescence (RF) and IR emission in the closed-shell indenyl cation (C</a:mi></a:mrow>9</a:mn></a:mrow></a:msub>H</a:mi></a:mrow>7</a:mn></a:mrow>+</a:mo></a:mrow></a:msubsup></a:mrow></a:math>), finding good agreement with a master equation model including molecular dynamics trajectories to describe internal-energy-dependent properties for RF. We find that <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi mathvariant=\"normal\">C</e:mi><e:mn>9</e:mn></e:msub><e:msubsup><e:mi mathvariant=\"normal\">H</e:mi><e:mn>7</e:mn><e:mo>+</e:mo></e:msubsup></e:math> formed with up to <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>E</i:mi></i:mrow><i:mrow><i:mi>c</i:mi></i:mrow></i:msub><i:mo>=</i:mo><i:mn>5.85</i:mn><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi>eV</i:mi></i:mrow></i:math> vibrational energy, which is <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mo>≈</k:mo><k:mn>2</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>eV</k:mi></k:math> above the dissociation threshold, radiatively cool rather than dissociate. The efficient radiative stabilization dynamics are likely common to other closed-shell PAHs present in space, contributing to their abundance. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.228002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Several small polycyclic aromatic hydrocarbons (PAHs) with closed-shell electronic structure have been identified in the cold, dark environment Taurus Molecular Cloud 1. We measure efficient radiative cooling through the combination of recurrent fluorescence (RF) and IR emission in the closed-shell indenyl cation (C9H7+), finding good agreement with a master equation model including molecular dynamics trajectories to describe internal-energy-dependent properties for RF. We find that C9H7+ formed with up to Ec=5.85eV vibrational energy, which is ≈2eV above the dissociation threshold, radiatively cool rather than dissociate. The efficient radiative stabilization dynamics are likely common to other closed-shell PAHs present in space, contributing to their abundance. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks