Effect of nanostructured MgO directly grown on pure magnesium substrate on its in vitro corrosion and bioactivity behaviour

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Majid Shahsanaei, Masoud Atapour, Morteza Shamanian, Nastaran Farahbakhsh, Swathi N.V. Raghu, Torsten Kowald, Sybille Krauß, Seyedsina Hejazi, Shiva Mohajernia, Manuela S. Killian
{"title":"Effect of nanostructured MgO directly grown on pure magnesium substrate on its in vitro corrosion and bioactivity behaviour","authors":"Majid Shahsanaei, Masoud Atapour, Morteza Shamanian, Nastaran Farahbakhsh, Swathi N.V. Raghu, Torsten Kowald, Sybille Krauß, Seyedsina Hejazi, Shiva Mohajernia, Manuela S. Killian","doi":"10.1016/j.jma.2025.05.006","DOIUrl":null,"url":null,"abstract":"This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte, offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality. The surface was characterized before and after immersion testing using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium. Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid (SBF), surpassing that of microstructured MgO. Hydrogen evolution decreased from 912±38 µL cm<sup>-2</sup> for untreated Mg to 615±32 µL cm<sup>-2</sup> for the Mg/MgO nanostructure and 545±29 µL cm<sup>-2</sup> for the Mg/MgO/HA sample. These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection, improved biomineralization, reduced hemolysis and increased cell viability, and reduced H<sub>2</sub> generation.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"36 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.05.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte, offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality. The surface was characterized before and after immersion testing using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium. Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid (SBF), surpassing that of microstructured MgO. Hydrogen evolution decreased from 912±38 µL cm-2 for untreated Mg to 615±32 µL cm-2 for the Mg/MgO nanostructure and 545±29 µL cm-2 for the Mg/MgO/HA sample. These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection, improved biomineralization, reduced hemolysis and increased cell viability, and reduced H2 generation.

Abstract Image

在纯镁基质上直接生长的纳米结构MgO对其体外腐蚀和生物活性的影响
本研究介绍了一种在非水电解质中通过阳极氧化制备的纳米结构MgO涂层,为解决耐腐蚀性和生物功能的挑战提供了一种新方法。采用场发射扫描电镜(FESEM)、能量色散x射线能谱(EDX)和x射线衍射(XRD)对浸渍前后的表面进行了表征。电化学阻抗谱(EIS)和动电位极化测试表明,与未经处理的镁相比,耐腐蚀性降低了2倍。生物矿化研究表明,在模拟体液(SBF)中14天后,纳米结构表面形成了Ca/P比为1.35的磷灰石,超过了微结构MgO。Mg/MgO纳米结构的析氢量从912±38µL cm-2下降到615±32µL cm-2, Mg/MgO/HA纳米结构的析氢量从545±29µL cm-2下降。这些发现强调了纳米结构MgO涂层的潜力,通过提供增强的腐蚀保护,改善生物矿化,减少溶血和提高细胞活力,减少H2的产生,来推进mg基植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信