{"title":"Rare earth element applications in Ga2O3: Luminescence and scintillation","authors":"Yibo Zhang, Zhuolun Han, Yizhang Guan, Yimin Liao, Jierui Xue, Guofeng Hu, Chee-Keong Tan","doi":"10.1063/5.0258406","DOIUrl":null,"url":null,"abstract":"Gallium oxide (Ga2O3), with its ultrawide bandgap, exceptional stability, and good optical properties, has demonstrated significant potential in high-power electronic devices, photodetectors, and high-energy radiation detection. However, its low carrier mobility and limited luminescence efficiency constrain its performance. Rare earth element (REE) doping, including europium (Eu), cerium (Ce), erbium (Er), and others, introduces localized states within the Ga2O3 bandgap, enhancing luminescence, scintillation, and catalytic activity, while enabling multi-functional applications through co-doping strategies. Therefore, the paper reviews the commonly employed REE-doped Ga2O3 synthesis methods (wet chemical methods, ALD, PLD, MBE, et al.) and the roles of REE dopants (Eu, Er, Tb, Ce, et al.) in luminescent and scintillation performance. Furthermore, the review highlights recent advances in REE-doped Ga2O3 for photoluminescence, electroluminescence, scintillation, photonic devices, and catalysis. These insights will guide breakthroughs in optoelectronics, radiation detection, and biomedicine applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"68 3 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0258406","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Gallium oxide (Ga2O3), with its ultrawide bandgap, exceptional stability, and good optical properties, has demonstrated significant potential in high-power electronic devices, photodetectors, and high-energy radiation detection. However, its low carrier mobility and limited luminescence efficiency constrain its performance. Rare earth element (REE) doping, including europium (Eu), cerium (Ce), erbium (Er), and others, introduces localized states within the Ga2O3 bandgap, enhancing luminescence, scintillation, and catalytic activity, while enabling multi-functional applications through co-doping strategies. Therefore, the paper reviews the commonly employed REE-doped Ga2O3 synthesis methods (wet chemical methods, ALD, PLD, MBE, et al.) and the roles of REE dopants (Eu, Er, Tb, Ce, et al.) in luminescent and scintillation performance. Furthermore, the review highlights recent advances in REE-doped Ga2O3 for photoluminescence, electroluminescence, scintillation, photonic devices, and catalysis. These insights will guide breakthroughs in optoelectronics, radiation detection, and biomedicine applications.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.