Xinyue Wu, Yiyun Zhang, Peipei Xing and Mengliang Zhu
{"title":"Surface functionalization strategies of ROS-scavenging nanozymes for synergistic therapy and efficient delivery","authors":"Xinyue Wu, Yiyun Zhang, Peipei Xing and Mengliang Zhu","doi":"10.1039/D5TB00877H","DOIUrl":null,"url":null,"abstract":"<p >Nanozymes, as synthetic nanomaterials that catalyze the conversion of enzyme substrates to products and follow enzymatic kinetics, have emerged as powerful agents for combating oxidative stress-related diseases by scavenging reactive oxygen species (ROS). In recent years, constructing multifunctional integrated systems by integrating nanozymes with therapeutic drugs or endowing them with efficient delivery capabilities through surface functionalization strategies has become one of the cutting-edge directions. This review explores recent progress in three key surface modification approaches—chemical conjugation, physical encapsulation, and drug loading—that collectively enable synergistic therapeutic effects, precise targeting, and effective penetration of biological barriers. Chemical conjugation allows for the direct attachment of molecules to nanozyme surfaces, enhancing synergistic efficacy and targeting specificity. Physical encapsulation using mesoporous structures, hydrogels, or microneedles improves nanozyme stability, extends <em>in vivo</em> retention, and facilitates controlled release. Drug-loading strategies further expand the therapeutic potential by enabling co-delivery of antioxidants and other functional agents to complex pathological environments. Despite these promising advancements, challenges remain in elucidating the fundamental catalytic mechanisms of nanozymes, ensuring long-term biocompatibility, and achieving scalable clinical translation. Future efforts should focus on developing dynamically responsive systems, achieving precision catalysis, and fostering interdisciplinary integration to accelerate the evolution of nanozyme-based therapeutics. This review systematically summarizes the modification strategies from a surface perspective, offering insights for constructing multifunctional systems.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 26","pages":" 7653-7667"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00877h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes, as synthetic nanomaterials that catalyze the conversion of enzyme substrates to products and follow enzymatic kinetics, have emerged as powerful agents for combating oxidative stress-related diseases by scavenging reactive oxygen species (ROS). In recent years, constructing multifunctional integrated systems by integrating nanozymes with therapeutic drugs or endowing them with efficient delivery capabilities through surface functionalization strategies has become one of the cutting-edge directions. This review explores recent progress in three key surface modification approaches—chemical conjugation, physical encapsulation, and drug loading—that collectively enable synergistic therapeutic effects, precise targeting, and effective penetration of biological barriers. Chemical conjugation allows for the direct attachment of molecules to nanozyme surfaces, enhancing synergistic efficacy and targeting specificity. Physical encapsulation using mesoporous structures, hydrogels, or microneedles improves nanozyme stability, extends in vivo retention, and facilitates controlled release. Drug-loading strategies further expand the therapeutic potential by enabling co-delivery of antioxidants and other functional agents to complex pathological environments. Despite these promising advancements, challenges remain in elucidating the fundamental catalytic mechanisms of nanozymes, ensuring long-term biocompatibility, and achieving scalable clinical translation. Future efforts should focus on developing dynamically responsive systems, achieving precision catalysis, and fostering interdisciplinary integration to accelerate the evolution of nanozyme-based therapeutics. This review systematically summarizes the modification strategies from a surface perspective, offering insights for constructing multifunctional systems.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices