Md Foysal Rabbi , Gijsje H. Koenderink , Yuval Mulla , Taeyoon Kim
{"title":"Fine-tuning of material properties by catch bonds","authors":"Md Foysal Rabbi , Gijsje H. Koenderink , Yuval Mulla , Taeyoon Kim","doi":"10.1016/j.actbio.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Semiflexible polymer networks are ubiquitous in biological systems, including a scaffolding structure within cells called the actin cytoskeleton. The polymers in these networks are interconnected by transient bonds. For example, actin filaments in the cytoskeleton are physically connected via cross-linker proteins. The mechanical and kinetic properties of the cross-linkers significantly affect the rheological properties of the actin cytoskeleton. Here, we employed an agent-based model to elucidate how the force-dependent behaviors of the cross-linkers determine the material properties of passive networks without molecular motors and the force generation of active networks with molecular motors. The cross-linkers are assumed to behave either as a slip bond, whose dissociation rate increases with forces, or as a catch-slip bond, whose dissociation rate decreases with forces at low force level but increases with forces at high force level. We found that catch-slip-bond cross-linkers can simultaneously increase both the stress and the strain at the yield point. Through a systematic variation in the force dependence of the catch-slip bonds, we identified the specific parameter regimes that enable network reinforcement and enhanced extensibility simultaneously. Specifically, we found that a sufficiently large force threshold for the catch-slip transition is essential for maintaining dynamic force-bearing elements that turnover continuously—a mechanism not achievable with slip bonds. Additionally, we demonstrate that such force-dependent redistribution of the catch-slip bonds substantially enhances internal contractile forces generated by a motor in active networks.</div></div><div><h3>Statement of significance</h3><div>Polymer networks are ubiquitous in industrial and biological systems. The polymers in these networks are often interconnected by transient bonds. The transient bonds behave as a slip bond whose dissociation rate is proportional to forces or as a catch-slip bond whose dissociation rate decreases with increased force (catch) at low force level but increases with increased force (slip) at high force level. In this study, we computationally tested different types of catch-slip bonds to define how the material properties of polymer networks are fine-tuned by each property of molecular bonds. We found that catch-slip bonds can increase both stress and strain at a yield point, which is impossible to achieve without the catch-slip bonds.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"201 ","pages":"Pages 372-384"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125004118","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Semiflexible polymer networks are ubiquitous in biological systems, including a scaffolding structure within cells called the actin cytoskeleton. The polymers in these networks are interconnected by transient bonds. For example, actin filaments in the cytoskeleton are physically connected via cross-linker proteins. The mechanical and kinetic properties of the cross-linkers significantly affect the rheological properties of the actin cytoskeleton. Here, we employed an agent-based model to elucidate how the force-dependent behaviors of the cross-linkers determine the material properties of passive networks without molecular motors and the force generation of active networks with molecular motors. The cross-linkers are assumed to behave either as a slip bond, whose dissociation rate increases with forces, or as a catch-slip bond, whose dissociation rate decreases with forces at low force level but increases with forces at high force level. We found that catch-slip-bond cross-linkers can simultaneously increase both the stress and the strain at the yield point. Through a systematic variation in the force dependence of the catch-slip bonds, we identified the specific parameter regimes that enable network reinforcement and enhanced extensibility simultaneously. Specifically, we found that a sufficiently large force threshold for the catch-slip transition is essential for maintaining dynamic force-bearing elements that turnover continuously—a mechanism not achievable with slip bonds. Additionally, we demonstrate that such force-dependent redistribution of the catch-slip bonds substantially enhances internal contractile forces generated by a motor in active networks.
Statement of significance
Polymer networks are ubiquitous in industrial and biological systems. The polymers in these networks are often interconnected by transient bonds. The transient bonds behave as a slip bond whose dissociation rate is proportional to forces or as a catch-slip bond whose dissociation rate decreases with increased force (catch) at low force level but increases with increased force (slip) at high force level. In this study, we computationally tested different types of catch-slip bonds to define how the material properties of polymer networks are fine-tuned by each property of molecular bonds. We found that catch-slip bonds can increase both stress and strain at a yield point, which is impossible to achieve without the catch-slip bonds.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.