Hui Liu, Jorge El-Azaz, Abou Yobi, Ryo Yokoyama, Shan Wu, Alec D Chin-Quee, Zachary Gorman, Ruthie Angelovici, Anna K Block, Hiroshi A Maeda, Donald R McCarty, Masaharu Suzuki
{"title":"Maize big embryo 6 reveals roles of plastidial and cytosolic prephenate aminotransferases in seed and plant development.","authors":"Hui Liu, Jorge El-Azaz, Abou Yobi, Ryo Yokoyama, Shan Wu, Alec D Chin-Quee, Zachary Gorman, Ruthie Angelovici, Anna K Block, Hiroshi A Maeda, Donald R McCarty, Masaharu Suzuki","doi":"10.1093/plcell/koaf067","DOIUrl":null,"url":null,"abstract":"<p><p>In plants, embryo size is determined via interactions between metabolic and developmental signals. Maize (Zea mays) big embryo 6 (bige6) enhances embryo size while sharply reducing plant growth. Here, we show that BigE6 encodes a plastidial prephenate aminotransferase (PPA-AT), a key enzyme in the arogenate pathway for L-phenylalanine (Phe) and L-tyrosine (Tyr) biosynthesis. The maize BigE6 paralog, BigE6Like, encodes a cytosol-localized PPA-AT, revealing Phe and Tyr biosynthesis via cytosolic arogenate as a potential alternative to the known cytosolic phenylpyruvate pathway. Moreover, the single PPA-AT gene of Arabidopsis (Arabidopsis thaliana) encodes plastidial and cytosolic enzymes by alternative splicing. Transgenic rescue of a ppa-at mutant in Arabidopsis demonstrates that the plastidial PPA-AT is indispensable for seed formation due, in part, to its essential role in the female gametophyte. Leaves of bige6 maize maintained overall homeostasis for aromatic amino acids and downstream metabolites, revealing a resilience of mechanisms that scale growth to a limiting supply of Phe and Tyr. In bige6 seeds, broad perturbation of amino acid homeostasis is associated with transcriptomic upregulation of growth processes in the embryo and endosperm, implicating amino acid signaling in the regulation of embryo size. Our findings reveal the complexity and developmental dependence of growth responses to limiting amino acid biosynthesis.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In plants, embryo size is determined via interactions between metabolic and developmental signals. Maize (Zea mays) big embryo 6 (bige6) enhances embryo size while sharply reducing plant growth. Here, we show that BigE6 encodes a plastidial prephenate aminotransferase (PPA-AT), a key enzyme in the arogenate pathway for L-phenylalanine (Phe) and L-tyrosine (Tyr) biosynthesis. The maize BigE6 paralog, BigE6Like, encodes a cytosol-localized PPA-AT, revealing Phe and Tyr biosynthesis via cytosolic arogenate as a potential alternative to the known cytosolic phenylpyruvate pathway. Moreover, the single PPA-AT gene of Arabidopsis (Arabidopsis thaliana) encodes plastidial and cytosolic enzymes by alternative splicing. Transgenic rescue of a ppa-at mutant in Arabidopsis demonstrates that the plastidial PPA-AT is indispensable for seed formation due, in part, to its essential role in the female gametophyte. Leaves of bige6 maize maintained overall homeostasis for aromatic amino acids and downstream metabolites, revealing a resilience of mechanisms that scale growth to a limiting supply of Phe and Tyr. In bige6 seeds, broad perturbation of amino acid homeostasis is associated with transcriptomic upregulation of growth processes in the embryo and endosperm, implicating amino acid signaling in the regulation of embryo size. Our findings reveal the complexity and developmental dependence of growth responses to limiting amino acid biosynthesis.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.