Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-05-10 eCollection Date: 2025-06-01 DOI:10.1093/nsr/nwaf182
Xinqi Li, Zhaojie Li, Chuang Li, Fei Tian, Zhengping Qiao, Danni Lei, Chengxin Wang
{"title":"Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery.","authors":"Xinqi Li, Zhaojie Li, Chuang Li, Fei Tian, Zhengping Qiao, Danni Lei, Chengxin Wang","doi":"10.1093/nsr/nwaf182","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving stable cycling of lithium metal batteries (LMBs) at high voltages presents a significant challenge due to interfacial instability and uneven lithium-ion transport, leading to dendrite formation and cathode degradation. Constructing a solid-electrolyte interphase (SEI) that facilitates fast and uniform ion transport is crucial for enhancing the stability of electrode structures. However, current research mainly focuses on interfacial instability while neglecting uneven ion transport, which is even more critical. In this study, we develop a novel electrolyte system, PAFE, by incorporating aluminum ethoxide (Al(EtO)<sub>3</sub>), fluoroethylene carbonate (FEC), and pentafluorocyclotriphosphazene (PFPN) into a carbonate-based electrolyte. Al(EtO)<sub>3</sub> serves as a crosslinking agent, facilitating the formation of a three-dimensional polymer network that promotes the uniform deposition of inorganic components such as LiF, Li<sub>3</sub>N, Li<sub>3</sub>P and Al<sub>2</sub>O<sub>3</sub> within the SEI and cathode-electrolyte interphase (CEI). These uniform interphases lower the activation energy for lithium-ion transport, thereby ensuring consistent ion flow and reducing internal stress within the electrodes. As a result, Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cells with PAFE exhibit exceptional cycling stability, retaining 80% capacity over 140 cycles at a high cut-off voltage of 4.7 V. Furthermore, 1 Ah pouch cells demonstrate excellent cycling performance, highlighting the potential of this electrolyte system for practical high-energy-density LMB applications.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 6","pages":"nwaf182"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf182","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving stable cycling of lithium metal batteries (LMBs) at high voltages presents a significant challenge due to interfacial instability and uneven lithium-ion transport, leading to dendrite formation and cathode degradation. Constructing a solid-electrolyte interphase (SEI) that facilitates fast and uniform ion transport is crucial for enhancing the stability of electrode structures. However, current research mainly focuses on interfacial instability while neglecting uneven ion transport, which is even more critical. In this study, we develop a novel electrolyte system, PAFE, by incorporating aluminum ethoxide (Al(EtO)3), fluoroethylene carbonate (FEC), and pentafluorocyclotriphosphazene (PFPN) into a carbonate-based electrolyte. Al(EtO)3 serves as a crosslinking agent, facilitating the formation of a three-dimensional polymer network that promotes the uniform deposition of inorganic components such as LiF, Li3N, Li3P and Al2O3 within the SEI and cathode-electrolyte interphase (CEI). These uniform interphases lower the activation energy for lithium-ion transport, thereby ensuring consistent ion flow and reducing internal stress within the electrodes. As a result, Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cells with PAFE exhibit exceptional cycling stability, retaining 80% capacity over 140 cycles at a high cut-off voltage of 4.7 V. Furthermore, 1 Ah pouch cells demonstrate excellent cycling performance, highlighting the potential of this electrolyte system for practical high-energy-density LMB applications.

通过聚合物辅助形成独特的界面,促进锂离子均匀传输,实现稳定的4.7 V锂金属电池。
由于界面不稳定和锂离子传输不均匀,导致枝晶形成和阴极退化,在高压下实现锂金属电池(lmb)的稳定循环是一个重大挑战。构建固体电解质间相(SEI)以促进离子的快速均匀传输对于提高电极结构的稳定性至关重要。然而,目前的研究主要集中在界面不稳定性上,而忽略了更为关键的离子不均匀输运。在这项研究中,我们开发了一种新的电解质体系,PAFE,将氧化铝(Al(EtO)3),氟碳酸乙烯(FEC)和五氟环三磷腈(PFPN)加入到碳酸盐基电解质中。Al(EtO)3作为交联剂,促进了三维聚合物网络的形成,促进了无机组分如LiF、Li3N、Li3P和Al2O3在SEI和阴极电解质界面(CEI)内的均匀沉积。这些均匀的界面相降低了锂离子传输的活化能,从而确保了离子流动的一致性,减少了电极内的内应力。因此,具有PAFE的Li||LiNi0.8Co0.1Mn0.1O2 (NCM811)电池表现出优异的循环稳定性,在4.7 V的高截止电压下,在140次循环中保持80%的容量。此外,1 Ah袋电池表现出优异的循环性能,突出了该电解质系统在实际高能量密度LMB应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信