pH-Inhibited Fenton etching of gold nanobipyramids: a multicolor approach for enhanced urea detection.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Ahmed Y Elbalaawy, Min-Jae Kim, Samy M Shaban, Eslam Hafez, Mohamed R Elmasry, Dong-Hwan Kim
{"title":"pH-Inhibited Fenton etching of gold nanobipyramids: a multicolor approach for enhanced urea detection.","authors":"Ahmed Y Elbalaawy, Min-Jae Kim, Samy M Shaban, Eslam Hafez, Mohamed R Elmasry, Dong-Hwan Kim","doi":"10.1038/s41378-025-00931-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative urea detection method utilizing pH-controlled Fenton etching of gold nanobipyramids (AuNBPs), offering a multicolor visual response. By leveraging the urease-catalyzed hydrolysis of urea, which releases ammonia and raises pH, the Fenton reaction is inhibited, reducing the etching of AuNBPs. This approach enables a highly sensitive and distinct multichromatic response across a wide range of urea concentrations, particularly at low target levels. The solution-based sensor achieved an exceptionally low detection limit of 0.098 μM, surpassing existing colorimetric urea biosensors. Furthermore, embedding the sensor in an agarose hydrogel matrix to create a solid-state format resulted in a detection limit of 0.2 μM. Real-world validation demonstrated high recovery rates in urine samples, further affirming the sensor's reliability. This multicolor biosensing platform offers a robust tool for point-of-care diagnostics, facilitating accurate and user-friendly urea detection.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"114"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00931-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative urea detection method utilizing pH-controlled Fenton etching of gold nanobipyramids (AuNBPs), offering a multicolor visual response. By leveraging the urease-catalyzed hydrolysis of urea, which releases ammonia and raises pH, the Fenton reaction is inhibited, reducing the etching of AuNBPs. This approach enables a highly sensitive and distinct multichromatic response across a wide range of urea concentrations, particularly at low target levels. The solution-based sensor achieved an exceptionally low detection limit of 0.098 μM, surpassing existing colorimetric urea biosensors. Furthermore, embedding the sensor in an agarose hydrogel matrix to create a solid-state format resulted in a detection limit of 0.2 μM. Real-world validation demonstrated high recovery rates in urine samples, further affirming the sensor's reliability. This multicolor biosensing platform offers a robust tool for point-of-care diagnostics, facilitating accurate and user-friendly urea detection.

ph抑制Fenton蚀刻金纳米金字塔:一种增强尿素检测的多色方法。
本研究提出了一种创新的尿素检测方法,利用ph控制的Fenton蚀刻金纳米金字塔(unbp),提供多色视觉响应。通过利用脲酶催化的尿素水解,释放氨并提高pH值,抑制芬顿反应,减少对aunbp的蚀刻。这种方法能够在广泛的尿素浓度范围内,特别是在低目标水平下,实现高度敏感和独特的多色响应。基于溶液的传感器的检测限极低,仅为0.098 μM,超过了现有的比色尿素生物传感器。此外,将传感器嵌入琼脂糖水凝胶基质中以形成固态格式,检测限为0.2 μM。实际验证表明,尿液样本的回收率很高,进一步肯定了传感器的可靠性。这种多色生物传感平台为即时诊断提供了一个强大的工具,促进了准确和用户友好的尿素检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信