Ahmed Y Elbalaawy, Min-Jae Kim, Samy M Shaban, Eslam Hafez, Mohamed R Elmasry, Dong-Hwan Kim
{"title":"pH-Inhibited Fenton etching of gold nanobipyramids: a multicolor approach for enhanced urea detection.","authors":"Ahmed Y Elbalaawy, Min-Jae Kim, Samy M Shaban, Eslam Hafez, Mohamed R Elmasry, Dong-Hwan Kim","doi":"10.1038/s41378-025-00931-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative urea detection method utilizing pH-controlled Fenton etching of gold nanobipyramids (AuNBPs), offering a multicolor visual response. By leveraging the urease-catalyzed hydrolysis of urea, which releases ammonia and raises pH, the Fenton reaction is inhibited, reducing the etching of AuNBPs. This approach enables a highly sensitive and distinct multichromatic response across a wide range of urea concentrations, particularly at low target levels. The solution-based sensor achieved an exceptionally low detection limit of 0.098 μM, surpassing existing colorimetric urea biosensors. Furthermore, embedding the sensor in an agarose hydrogel matrix to create a solid-state format resulted in a detection limit of 0.2 μM. Real-world validation demonstrated high recovery rates in urine samples, further affirming the sensor's reliability. This multicolor biosensing platform offers a robust tool for point-of-care diagnostics, facilitating accurate and user-friendly urea detection.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"114"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00931-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative urea detection method utilizing pH-controlled Fenton etching of gold nanobipyramids (AuNBPs), offering a multicolor visual response. By leveraging the urease-catalyzed hydrolysis of urea, which releases ammonia and raises pH, the Fenton reaction is inhibited, reducing the etching of AuNBPs. This approach enables a highly sensitive and distinct multichromatic response across a wide range of urea concentrations, particularly at low target levels. The solution-based sensor achieved an exceptionally low detection limit of 0.098 μM, surpassing existing colorimetric urea biosensors. Furthermore, embedding the sensor in an agarose hydrogel matrix to create a solid-state format resulted in a detection limit of 0.2 μM. Real-world validation demonstrated high recovery rates in urine samples, further affirming the sensor's reliability. This multicolor biosensing platform offers a robust tool for point-of-care diagnostics, facilitating accurate and user-friendly urea detection.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.