Shuhao Zhao, Peirui Ji, Fei Wang, Shaobo Li, Guofeng Zhang, Tao Liu, Shuming Yang
{"title":"High-order near-field imaging of low-dimensional materials at infrared wavelengths.","authors":"Shuhao Zhao, Peirui Ji, Fei Wang, Shaobo Li, Guofeng Zhang, Tao Liu, Shuming Yang","doi":"10.1038/s41378-025-00953-z","DOIUrl":null,"url":null,"abstract":"<p><p>Near-field imaging provides insight into the fundamental light-matter interactions on a nanometer scale. Scattering-type scanning near-field optical microscopy (s-SNOM) is a powerful technique capable of overcoming the diffraction limit and achieving spatial resolutions below 10 nm (sub-10 nm). However, constrained by the working mechanisms, the signal-to-noise ratio of the imaging is highly affected by undesired background scattering light, which is found to be associated with the optical mode and excitation wavelength, especially for samples with a large specific surface area. Here, we propose a high-resolution method with high-order near-field modes at the infrared range to measure low-dimensional materials. With this technique, we reveal the excitation and propagation of the surface plasmon polaritons in graphene and carbon nanotubes, which was impossible with the low-order imaging approach. Besides, the imaging quality for gold nanoparticles on gold thin film is much better than the AFM results. This paper offers an advanced approach for high-resolution measurement of low-dimensional materials with s-SNOM, owning great potential for sensitive nanoscale imaging.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"115"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00953-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Near-field imaging provides insight into the fundamental light-matter interactions on a nanometer scale. Scattering-type scanning near-field optical microscopy (s-SNOM) is a powerful technique capable of overcoming the diffraction limit and achieving spatial resolutions below 10 nm (sub-10 nm). However, constrained by the working mechanisms, the signal-to-noise ratio of the imaging is highly affected by undesired background scattering light, which is found to be associated with the optical mode and excitation wavelength, especially for samples with a large specific surface area. Here, we propose a high-resolution method with high-order near-field modes at the infrared range to measure low-dimensional materials. With this technique, we reveal the excitation and propagation of the surface plasmon polaritons in graphene and carbon nanotubes, which was impossible with the low-order imaging approach. Besides, the imaging quality for gold nanoparticles on gold thin film is much better than the AFM results. This paper offers an advanced approach for high-resolution measurement of low-dimensional materials with s-SNOM, owning great potential for sensitive nanoscale imaging.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.