Yang Lv, Sisi Peng, Yali Liu, Hefeng Yang, Guiding Li, Yi Peng
{"title":"Cross-omics analysis reveals microbe-metabolism interactions characteristic of gingival enlargement associated with fixed orthodontic in adolescents.","authors":"Yang Lv, Sisi Peng, Yali Liu, Hefeng Yang, Guiding Li, Yi Peng","doi":"10.1080/20002297.2025.2513739","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the oral microbiome and metabolome longitudinal changes associated with orthodontic treatment-induced gingival enlargement (OT-GE).</p><p><strong>Methods: </strong>Twenty-six subjects were divided into case and control groups based on the gingival overgrowth index (GOi). The OT-GE group was divided into the no gingival enlargement (OT-GE0, <i>n</i> = 5) and persistent gingival enlargement (OT-GE1, <i>n</i> = 11). The control group included orthodontic treatment periodontal health (OT-GH, <i>n</i> = 5), and no orthodontic treatment periodontal health (NOT-GH, <i>n</i> = 5). Microbial composition and metabolites in saliva were investigated using cross-omics.</p><p><strong>Results: </strong>Longitudinal analysis linked orthodontic treatment-induced gingival enlargement to distinct oral microbiome and metabolome shifts. The OT-GE group showed significantly higher bleeding on probing (BOP), plaque scores (<i>p</i> < 0.001), probing depth, GOi, and ligature wire differences (<i>p</i> < 0.05) versus controls. Microbial diversity and species richness were elevated in OT-GE (<i>p</i> < 0.05), though no differences emerged between OT-GE0 and OT-GE1) subgroup (<i>p</i> > 0.05). Cross-omics identified specific periodontal pathogens and metabolites linked to gingival enlargement. Disrupted amino acid biosynthesis pathways, particularly citrulline metabolism, correlated with functional gene dysregulation and microbial imbalance. Aberrant citrulline intake appeared to drive dysbiosis, potentially contributing to gingival overgrowth.</p><p><strong>Conclusions: </strong>OT-GE pathogenesis involves functional gene-regulated metabolite metabolism influencing periodontal pathogens.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2513739"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2025.2513739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the oral microbiome and metabolome longitudinal changes associated with orthodontic treatment-induced gingival enlargement (OT-GE).
Methods: Twenty-six subjects were divided into case and control groups based on the gingival overgrowth index (GOi). The OT-GE group was divided into the no gingival enlargement (OT-GE0, n = 5) and persistent gingival enlargement (OT-GE1, n = 11). The control group included orthodontic treatment periodontal health (OT-GH, n = 5), and no orthodontic treatment periodontal health (NOT-GH, n = 5). Microbial composition and metabolites in saliva were investigated using cross-omics.
Results: Longitudinal analysis linked orthodontic treatment-induced gingival enlargement to distinct oral microbiome and metabolome shifts. The OT-GE group showed significantly higher bleeding on probing (BOP), plaque scores (p < 0.001), probing depth, GOi, and ligature wire differences (p < 0.05) versus controls. Microbial diversity and species richness were elevated in OT-GE (p < 0.05), though no differences emerged between OT-GE0 and OT-GE1) subgroup (p > 0.05). Cross-omics identified specific periodontal pathogens and metabolites linked to gingival enlargement. Disrupted amino acid biosynthesis pathways, particularly citrulline metabolism, correlated with functional gene dysregulation and microbial imbalance. Aberrant citrulline intake appeared to drive dysbiosis, potentially contributing to gingival overgrowth.
目的:探讨正畸治疗所致牙龈增大(OT-GE)的口腔微生物组和代谢组纵向变化。方法:根据牙龈过度生长指数(GOi)将26例患者分为病例组和对照组。OT-GE组分为无牙龈增大组(OT-GE0, n = 5)和持续牙龈增大组(OT-GE1, n = 11)。对照组包括正畸治疗牙周健康组(OT-GH, n = 5)和未正畸治疗牙周健康组(NOT-GH, n = 5)。利用交叉组学研究了唾液中的微生物组成和代谢物。结果:纵向分析将正畸治疗引起的牙龈扩大与明显的口腔微生物组和代谢组变化联系起来。OT-GE组探查出血(BOP)、斑块评分显著高于对照组(p p p p > 0.05)。交叉组学鉴定了与牙龈扩大相关的特定牙周病原体和代谢物。氨基酸生物合成途径的中断,特别是瓜氨酸代谢,与功能基因失调和微生物失衡有关。异常的瓜氨酸摄入似乎会导致生态失调,可能导致牙龈过度生长。结论:OT-GE发病机制涉及影响牙周病原菌的功能基因调控代谢物代谢。
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries