Development of an enhanced liver scaffold recellularization using fibronectin.

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Sadia Afrin, Usha Yadav, Chandra J Yadav, Jihad Kamel, Jun-Young Lee, Kyung-Mee Park
{"title":"Development of an enhanced liver scaffold recellularization using fibronectin.","authors":"Sadia Afrin, Usha Yadav, Chandra J Yadav, Jihad Kamel, Jun-Young Lee, Kyung-Mee Park","doi":"10.1177/08853282251350315","DOIUrl":null,"url":null,"abstract":"<p><p>Decellularized liver scaffolds offer a promising foundation for liver tissue engineering and regenerative medicine. However, several challenges such as poor cell adhesion, inefficient reseeding, inadequate vascularization, and a high risk of blood clot formation continue to hinder their clinical application. While fibronectin (FN) has been widely used to enhance scaffold functionality, its potential for liver-specific applications remains largely unexplored. In this study, we developed a perfusion-assisted FN coating technique to improve the adhesion of endothelial cells (EA.hy926) and hepatocytes (HepG2), thereby enhancing the overall biocompatibility of liver scaffolds. FN was carefully introduced into decellularized rat liver scaffolds, allowing for targeted deposition across both the vascular and parenchymal compartments to optimize cellular attachment. Following portal vein reseeding and 7 days of bioreactor incubation, the FN-coated scaffolds showed significantly better endothelial cell adhesion within blood vessel structures and increased HepG2 cell coverage throughout the liver tissue. Immunohistochemistry (IHC) confirmed enhanced HepG2 proliferation, while TUNEL and RT-qPCR analyses indicated improved cell viability and scaffold functionality. Additionally, ex vivo blood perfusion tests demonstrated reduced thrombogenicity, likely due to improved endothelialization and lower platelet adhesion. These findings highlight FN functionalization as an effective bioengineering approach to overcoming key barriers in vascularization, biocompatibility, and cellular integration for liver scaffolds. By extending the known benefits of FN beyond its previously studied applications in kidney and heart scaffolds, this research introduces a promising strategy for advancing bioengineered liver grafts and potential transplantation models.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251350315"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251350315","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Decellularized liver scaffolds offer a promising foundation for liver tissue engineering and regenerative medicine. However, several challenges such as poor cell adhesion, inefficient reseeding, inadequate vascularization, and a high risk of blood clot formation continue to hinder their clinical application. While fibronectin (FN) has been widely used to enhance scaffold functionality, its potential for liver-specific applications remains largely unexplored. In this study, we developed a perfusion-assisted FN coating technique to improve the adhesion of endothelial cells (EA.hy926) and hepatocytes (HepG2), thereby enhancing the overall biocompatibility of liver scaffolds. FN was carefully introduced into decellularized rat liver scaffolds, allowing for targeted deposition across both the vascular and parenchymal compartments to optimize cellular attachment. Following portal vein reseeding and 7 days of bioreactor incubation, the FN-coated scaffolds showed significantly better endothelial cell adhesion within blood vessel structures and increased HepG2 cell coverage throughout the liver tissue. Immunohistochemistry (IHC) confirmed enhanced HepG2 proliferation, while TUNEL and RT-qPCR analyses indicated improved cell viability and scaffold functionality. Additionally, ex vivo blood perfusion tests demonstrated reduced thrombogenicity, likely due to improved endothelialization and lower platelet adhesion. These findings highlight FN functionalization as an effective bioengineering approach to overcoming key barriers in vascularization, biocompatibility, and cellular integration for liver scaffolds. By extending the known benefits of FN beyond its previously studied applications in kidney and heart scaffolds, this research introduces a promising strategy for advancing bioengineered liver grafts and potential transplantation models.

纤维连接蛋白增强肝支架再细胞化的研究进展。
脱细胞肝支架为肝组织工程和再生医学提供了良好的基础。然而,一些挑战,如细胞粘附性差、补种效率低、血管化不足和血栓形成的高风险,继续阻碍着它们的临床应用。虽然纤维连接蛋白(FN)已被广泛用于增强支架功能,但其在肝脏特异性应用方面的潜力仍未得到充分开发。在本研究中,我们开发了一种灌注辅助的FN涂层技术,以改善内皮细胞(EA.hy926)和肝细胞(HepG2)的粘附,从而提高肝支架的整体生物相容性。FN被小心地引入到去细胞化的大鼠肝脏支架中,允许在血管和实质间室中靶向沉积,以优化细胞附着。门静脉补种和生物反应器孵育7天后,fn包被支架血管结构内内皮细胞黏附明显改善,HepG2细胞覆盖整个肝组织。免疫组织化学(IHC)证实HepG2增殖增强,TUNEL和RT-qPCR分析显示细胞活力和支架功能增强。此外,体外血液灌注试验显示血栓形成性降低,可能是由于内皮化改善和血小板粘附降低。这些发现强调了FN功能化是一种有效的生物工程方法,可以克服肝支架血管化、生物相容性和细胞整合方面的关键障碍。通过将FN的已知益处扩展到其先前在肾脏和心脏支架中的应用,本研究为推进生物工程肝移植和潜在移植模型引入了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信