Hasan Demirci, Jessica P Bahena-Lopez, Alina Smorodchenko, Xiao-Tong Su, Jonathan W Nelson, Chao-Ling Yang, Joshua N Curry, Xin-Peng Duan, Wen-Hui Wang, Yuliya Sharkovska, Ruisheng Liu, Duygu Elif Yilmaz, Catarina Quintanova, Katie Emberley, Ben Emery, Nina Himmerkus, Markus Bleich, David H Ellison, Sebastian Bachmann
{"title":"Distinct cell types along thick ascending limb express pathways for monovalent and divalent cation transport.","authors":"Hasan Demirci, Jessica P Bahena-Lopez, Alina Smorodchenko, Xiao-Tong Su, Jonathan W Nelson, Chao-Ling Yang, Joshua N Curry, Xin-Peng Duan, Wen-Hui Wang, Yuliya Sharkovska, Ruisheng Liu, Duygu Elif Yilmaz, Catarina Quintanova, Katie Emberley, Ben Emery, Nina Himmerkus, Markus Bleich, David H Ellison, Sebastian Bachmann","doi":"10.1172/jci.insight.190992","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney thick ascending limb cells reabsorb sodium, potassium, calcium, magnesium and contribute to urinary concentration. These cells are typically viewed as a single type that recycles potassium across the apical membrane and generates a lumen-positive transepithelial voltage driving calcium and magnesium reabsorption, although variability in potassium channel expression has been reported. Additionally, recent transcriptomic analyses suggest that different cell types exist along this segment, but classifications have varied and have not led to a new consensus model. We used immunolocalization, electrophysiology and enriched single nucleus RNA-Seq to identify thick ascending limb cell types in rat, mouse and human. We identified three major TAL cell types defined by expression of potassium channels and claudins. One has apical potassium channels, low basolateral potassium conductance, and is bordered by a monovalent cation-permeable claudin. A second lacks apical potassium channels, has high basolateral potassium conductance and is bordered by calcium- and magnesium-permeable claudins. A third type also lacks apical potassium channels and has high basolateral potassium conductance, but these cells are ringed by monovalent cation-permeable claudins. The recognition of diverse cell types may resolve longstanding questions about how solute transport can be modulated selectively and how disruption of these cells leads to human disease.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.190992","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney thick ascending limb cells reabsorb sodium, potassium, calcium, magnesium and contribute to urinary concentration. These cells are typically viewed as a single type that recycles potassium across the apical membrane and generates a lumen-positive transepithelial voltage driving calcium and magnesium reabsorption, although variability in potassium channel expression has been reported. Additionally, recent transcriptomic analyses suggest that different cell types exist along this segment, but classifications have varied and have not led to a new consensus model. We used immunolocalization, electrophysiology and enriched single nucleus RNA-Seq to identify thick ascending limb cell types in rat, mouse and human. We identified three major TAL cell types defined by expression of potassium channels and claudins. One has apical potassium channels, low basolateral potassium conductance, and is bordered by a monovalent cation-permeable claudin. A second lacks apical potassium channels, has high basolateral potassium conductance and is bordered by calcium- and magnesium-permeable claudins. A third type also lacks apical potassium channels and has high basolateral potassium conductance, but these cells are ringed by monovalent cation-permeable claudins. The recognition of diverse cell types may resolve longstanding questions about how solute transport can be modulated selectively and how disruption of these cells leads to human disease.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.