{"title":"De novo missense variants of KCNA3, KCNA4, and KCNA6 cause early onset developmental epileptic encephalopathy.","authors":"Meng-Han Tsai, Chia-Hua Lo, You-Xuan Liu, Sheng-Nan Wu, Cheng-Yen Kuo, Yi-Hsuan Liu, Ying-Chao Chang, Kuan-Lin Lin, Po-Cheng Hung, Hwei-Hsien Chen, Jian-Liang Chen, Chi-Kuang Yao, Eric Hwang, Ya-Jean Wang","doi":"10.1093/hmg/ddaf090","DOIUrl":null,"url":null,"abstract":"<p><p>Shaker-type potassium channel genes (Kv1) have been linked to human epilepsies, including KCNA1 (Kv1.1), KCNA2 (Kv1.2), and more recently, KCNA3 (Kv1.3) and KCNA6 (Kv1.6). In this study, we report three early-onset epilepsy cases with de novo missense mutations in Shaker-type channel genes, including Kv1.3, KCNA4 (Kv1.4), and Kv1.6, identified through whole exome sequencing trio study. The newly identified Kv1.3-V478M, Kv1.6-T421I, and Kv1.4-V558L mutations are located within the channel selectivity filter or S6 hinge, both critical for channel gating. These variants are in paralogous locations of previously reported pathogenic variant in KCNA2. These mutations do not significantly affect trafficking and plasma membrane localization of the Kv channels. In contrast, our patch-clamp analysis in a cell-based system reveals that all three mutations cause severe loss-of-function channel properties. Additionally, our Drosophila model highlights the detrimental effects of Kv1.3-V478M on neural circuit activity. Current findings suggest that, similar to Kv1.1, Kv1.2, and Kv1.3, both loss-of-function and gain-of-function mutations in Kv1.6 may contribute to the phenotypic variability in epilepsy severity. Our study also extends the list of potassium channel genes implicated in human epilepsy, introducing Kv1.4 as a novel epilepsy-related gene.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf090","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Shaker-type potassium channel genes (Kv1) have been linked to human epilepsies, including KCNA1 (Kv1.1), KCNA2 (Kv1.2), and more recently, KCNA3 (Kv1.3) and KCNA6 (Kv1.6). In this study, we report three early-onset epilepsy cases with de novo missense mutations in Shaker-type channel genes, including Kv1.3, KCNA4 (Kv1.4), and Kv1.6, identified through whole exome sequencing trio study. The newly identified Kv1.3-V478M, Kv1.6-T421I, and Kv1.4-V558L mutations are located within the channel selectivity filter or S6 hinge, both critical for channel gating. These variants are in paralogous locations of previously reported pathogenic variant in KCNA2. These mutations do not significantly affect trafficking and plasma membrane localization of the Kv channels. In contrast, our patch-clamp analysis in a cell-based system reveals that all three mutations cause severe loss-of-function channel properties. Additionally, our Drosophila model highlights the detrimental effects of Kv1.3-V478M on neural circuit activity. Current findings suggest that, similar to Kv1.1, Kv1.2, and Kv1.3, both loss-of-function and gain-of-function mutations in Kv1.6 may contribute to the phenotypic variability in epilepsy severity. Our study also extends the list of potassium channel genes implicated in human epilepsy, introducing Kv1.4 as a novel epilepsy-related gene.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.